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This second edition follows the same philosophy as the first edition. That is, the goal 
of this text is to start with basic concepts, provide intuitive reasoning for them, and 
gradually build a set of understandable concepts for the design of brushless perma-
nent magnet motors. This text does not assume that you know all the jargon of motor 
design before reading this book, but rather introduces and explains them so that this 
and other books make sense. 

The first three chapters of this edition closely follow those of the first edition. This 
basic materia] forms the foundation for the more detailed concepts that follow it. The 
remaining chapters contain all new material. While the material in the remaining 
chapters of the first edition was informative and provided simple tools for motor 
design, it was not very useful for rigorous motor design. Chapter 4 of this edition 
covers the same material as that in the first edition, but does so with much greater 
depth. All of the new chapters reflect knowledge gained and details worked out since 
publication of the first edition. Despite their rigor, the new material continues to fol-
low the keep-it-simple philosophy adopted by the first edition. 

Because motor design is not a hot discipline where fortunes are made or lost over-
night, traditional publishers were not interested in publishing this text. As a result, 1 
engaged in this project alone. I purchased desktop publishing software, equation 
composition software, illustration software, and a Postscript laser printer. Every 
word, equation, and illustration was conceived, composed and placed on pages by 
me. For better than six months I worked on this text whenever time permitted, as 
well as on numerous occasions when it did not. I am very fortunate to have a job that 
gives me time to work on projects such as this, even if the time spent was considered 
ill-advised by some. 

For much of the material in this text I am indebted to others. I am indebted to those 
who contributed the works cited in the Bibliography as well as to many other articles, 
books, and reports that have passed through my hands. I am indebted to all fellow 
motor designers and consultants that I have crossed paths with over the years. I am 
also indebted to all those who have engaged my services as a consultant. Thank you. 

I hope you find this text useful. The material presented here is not taught j n any 
academic environment that I am aware of, despite the fact that brushless permanent 
magnet motors play an important role in the world economy. As technology pro-



gresses, the number of disciplines increases dramatically and the intellectual content 
of each discipline becomes highly specialized. This is certainly true of motor design. 
As a result, texts such as this one play a valuable role in documenting the intellectual 
content of one particular highly-specialized discipline. 

The highly specialized nature of technological disciplines promotes the need for 
and existence of specialists, i.e., consultants. I am one of those people in the area of 
brushless permanent magnet motors. If I can be of service to you, please feel free to 
contact me. If I cannot help you directly, I can help you find someone who can. 

Sincerely, 

Duane Hanselman 
March 2003 



You've just picked up another book on motors. You've seen many others, but they all 
assume that you know more about motors than you do. Phrases such as armature 
reaction, slot leakage, fractional pitch, and skew factor are used with little or no 
introduction. You keep looking for a book that is written from a more basic, yet rigor-
ous, perspective and you're hoping this is it. 

If the above describes at least part of your reason for picking up this book, then this 
book is for you. This book starts with basic concepts, provides intuitive reasoning for 
them, and gradually builds a set of understandable concepts for the design of brush-
less permanent magnet motors. It is meant to be the book to read before all other 
motor books. Every possible design variation is not considered. Only basic design 
concepts are covered in depth. However, the concepts illustrated are described in 
such a way that common design variations follow naturally. 

If the first paragraph above does not describe your reason for picking up this book, 
then this book may still be for you. It is for you if you are looking for a fresh 
approach to this material. It is also for you if you are looking for a modern text that 
brings together material normally scattered in numerous texts and articles many of 
which were written decades ago. 

Is this book for you if you are never going to design a motor? By all means, yes. 
Although the number of people who actually design motors is very small, many 
more people specify and use motors in an infinite variety of applications. The mate-
rial presented in this text will provide the designers of systems containing motors a 
wealth of information about how brushless permanent magnet motors work and 
what the basic performance tradeoffs are. Used wisely, this information will lead to 
better engineered motor systems. 

Why a book on brushless permanent magnet motor design? This book is motivated 
by the ever increasing use of brushless permanent magnet motors in applications 
ranging from hard disk drives to a variety of industrial and military uses. Brushless 
permanent magnet motors have become attractive because of the significant 
improvements in permanent magnets over the past decade, similar improvements in 
power electronics devices, and the ever increasing need to develop smaller, cheaper, 
and more energy efficient motors. At the present time, brushless permanent magnet 
motors are not the most prevalent motor type in use. However, as their cost contin-



ues to decrease, they will slowly become a dominant motor type because of their 
superior drive characteristics and efficiency. 

Finally, what's missing from this book? What's missing is the "nuts and bolts" 
required to actually build a motor. It does not include commercial material specifica-
tions and their suppliers, such as those for electrical steels, permanent magnets, 
adhesives, wire tables, bearings, etc. In addition, this book does not discuss the vari-
ety of manufacturing processes used in motor fabrication. While this information is 
needed to build a motor, much of it becomes outdated as new materials and proc-
esses evolve. Moreover, the inclusion of this material would dilute the primary focus 
of this book, which is to understand the intricacies and tradeoffs in the magnetic 
design of brushless permanent magnet motors. 

I hope that you find this book useful and perhaps enlightening. If you have correc-
tions, please share them with me, as it is impossible to eliminate all errors, especially 
as sole author. I also welcome your comments and constructive criticisms about the 
material. 



This chapter develops a number of basic motor concepts in a way that appeals to 
your intuition. In doing so, the concepts are more likely to make sense, especially 
when these concepts are used for motor design in later chapters. Many of the con-
cepts presented here apply to most motor types since all motors are constructed of 
similar materials and all produce the same output, namely torque. 

1.1 Scope 

This text covers the analysis and design of rotational brushless permanent magnet 
(PM) motors. Brushless DC, PM synchronous, and PM step motors are all brushless 
permanent magnet motors. These specific motor types evolved over time to satisfy 
different application niches, but their operating principles are essentially identical. 
Thus, the material presented in this text is applicable to all three of these motor types, 
with particular emphasis given to brushless DC and PM synchronous motors. 

To put these motor types into perspective, it is useful to show where they fit in the 
overall classification of electric motors as shown in Fig. 1-1. The other motors shown 
in the figure are not considered in this text. Their operating principles can be found 
in a number of other texts. 

Brushless DC motors are typically characterized as having a trapezoidal back elec-
tromotive force  (EMF) and are typically driven by rectangular pulse currents. This 
mimics the operation of brush DC motors. From this perspective, the name "brush-
less DC" fits even though it is an AC motor. PM synchronous motors differ from 
brushless DC motors in that they typically have a sinusoidal back EMF and are 
driven by sinusoidal currents. Step motors in general have high pole counts and 
therefore require many periods of excitation for each shaft revolution. Even though 
they can be driven like other synchronous motors, they are typically driven with cur-
rent pulses. Step motors are typically used in low cost, high volume, position,-cqntrol 
applications where the cost of position feedback cannot be justified. 



Figure 1.1 A classification of motors. 



The most common motor shape is cylindrical as shown in Fig. 1-2a. This motor shape 
and all others contain two primary parts. The nonmoving or stationary part is called 
the stator. The moving or rotating part is called the rotor. In most cylindrical motors, 
the rotor appears inside the stator as shown in Fig. 1-2a. This construction is popular 
because placing the nonmoving stator on the outside makes it easy to attach the 
motor to its surroundings. Moreover, confining the rotor inside the stator provides a 
natural shield to protect the moving rotor from its surroundings. 

In addition to the cylindrical shape, motors can be constructed in numerous other 
ways. Several possibilities are shown in Fig. 1-2. Figs. 1-2a and 1-2b show the two 
cylindrical shapes. When the rotor appears on the outside of the stator as shown in 
Fig. 1-2b, the motor is often said to be an inside-out motor. For these motors, a mag-
netic field travels in a radial direction across the air gap between the rotor and stator. 
As a result, these motors are called radial flux motors. Motors having a pancake 
shape are shown in Figs. l-2c and 1-2d. In these axial flux motors, the magnetic field 
between the rotor and stator travels in the axial direction. 

Figure 1-2. Motor Construction Possibilities. 



Brushless PM motors can be built in all the shapes shown in Fig. 1-2 as well as in a 
number of other more creative shapes. All brushless PM motors are constructed with 
electrical windings on the stator and permanent magnets on the rotor. This construc-
tion is one of the primary reasons for the increasing popularity of brushless PM 
motors. Because the windings remain stationary, no potentially troublesome moving 
electrical contacts, i.e., brushes are required. In addition, stationary windings are eas-
ier to keep cool. 

The common cylindrical shape shown in Fig. 1-2, leads to the use of the cylindrical 
coordinate system as shown in Fig. 1-3. Here the r-direction is called radial, the z-
direction is called axial, and the ^-direction is called tangential or circumferential. 

1.3 Torque 

All motors produce torque. Torque is given by the product of a tangential force and 
the radius at which it acts, and thus torque has units of force times length, e.g., ozf in, 
lbf-ft, or N-m. To understand this concept, consider the wrench on the nut shown in 
Fig. 1-4. If a force F is applied to the wrench in the tangential direction, i.e., perpen-
dicular to the handle, at a distance r from the center of the nut, the twisting force or 
torque experienced by the bolt is 

This relationship implies that if the length of the wrench is doubled and the same 
force is applied at a distance 2r, the torque experienced by the nut is doubled. Like-
wise, shortening the wrench by a factor of two and applying the same force cuts the 
torque in half. Thus, a fixed force produces the most torque when the radius at which 
it is applied is maximized. Furthermore, it is only force acting in the tangential direc-

T = Fr (1.1) 

Figure 1-3. The cylindrical coordinate system. 



Figure 1-4. A wrench on a nut. 

tion creates torque. If the force is applied in an outwardly radial direction, the 
wrench simply comes off the nut and no torque is experienced by the nut. Taking the 
direction of applied force into account, torque can be expressed as T=Frsin0,  where 0 
is the angle at which the force is applied with respect to the radial direction. 

This concept of torque makes sense to anyone who has tried to loosen a rusted nut: 
the longer the wrench, the less force required to loosen the nut. And the force applied 
to the wrench is most efficient when it is in the circumferential direction, i.e., in the 
direction tangential to a circle centered over the nut as shown in Fig. 1-4. Clearly if 
the force is applied in an outward radial direction, the nut experiences no torque, and 
the wrench comes off the nut. 

1.4 Motor Action 

With an understanding of torque production, it is now possible to illustrate how a 
brushless permanent magnet motor works. All that's required is the rudimentary 
knowledge that magnets are attracted to iron, that opposite magnet poles attract, that 
like magnet poles repel each other, and that current flowing in a coil of wire makes 
an electromagnet. 

Consider the bar permanent magnet centered in a stationary iron ring as shown in 
Fig. 1-5, where the bar magnet in the figure is free to spin about its center, but is oth-
erwise fixed. The magnet is the rotor and the iron ring is the stator, and they are 
separated by an air gap. As shown in the figure, the magnet does not have any pre-
ferred resting position. Each end experiences an equal but oppositely-directed, radial 
force of attraction to the ring that is not a function of the particular direction of the 
magnet. The magnet experiences no net force, and thus no torque is produced. 

Next consider changing the iron ring so that it has two protrusions or poles on it as 
shown in Fig. 1-6. As before, each end of the magnet experiences an equal but oppo-



Figure 1-5. A magnet free to spin inside a steel ring. 

sitely directed radial force. Now however, if the magnet is spun slowly it will have 
the tendency to come to rest in the aligned position at 0=0° or 0=180°. That is, as the 
magnet spins it will experience a force that will try to align the magnet with the sta-
tor poles. This occurs because the force of attraction between a magnet and iron 
increases dramatically as the physical distance between the two decreases. Because 
the magnet is free to spin, this force is partly in the tangential direction and torque is 
produced. 

Fig. 1-7 depicts this torque graphically as a function of motor position. The posi-
tions where the torque is zero are called detent positions. When the magnet is aligned 
with the poles, any small disturbance causes the magnet to restore itself to the 
aligned position. Thus these detent positions are said to be stable. On the other hand, 
when the magnet is halfway between the poles, any small disturbance causes the 
magnet to move away from the unaligned position and seek alignment. Thus, una-
ligned detent positions are said to be unstable. While the shape of the detent torque 
is approximately sinusoidal in Fig. 1-7, in a real motor its shape is a complex function 
of motor geometry and material properties. 
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Figure 1-7. Torque experienced by the magnet in Fig. 1-6. 

The torque described here is formally called reluctance torque, and more commonly 
cogging torque. In most applications, cogging torque is undesirable. 

Now consider the addition of current carrying coils to the poles as shown in Fig. 1-
8. If current is applied to the coils, the poles become electromagnets. In particular, if 
the current is applied in the proper direction, the poles become magnetized as shown 
in Fig. 1-8. In this situation, the force of attraction between the bar magnet and the 
opposite electromagnet poles creates another type of torque, formally called mutual 
or alignment torque. It is this torque that is used in brushless PM motors to do work. 
The term mutual is used because it is the mutual attraction between the magnet poles 

Figure 1-8. Current-carrying windings added to Fig. 1.6. 



that produces torque. The term alignment is used because the force of attraction 
seeks to align the bar magnet and coil-created magnet poles. 

This torque could also be called repulsion torque, since if the current is applied in 
the opposite direction, the poles become magnetized in the opposite direction as 
shown in Fig. 1-9. In this situation the like poles repel, sending the bar magnet in the 
opposite direction. Since both of these scenarios involve the mutual interaction of the 
magnet poles, the torque mechanism is identical, and the term repulsion torque is not 
used. 

To get the bar magnet to turn continuously, it is common to employ more than one 
set of coils. Fig. 1-10 shows the case where three sets of coils are used. These sets are 
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called phase windings or simply windings. In the figure, the phases are labeled A, B, 
and C. The phase labels with overbars are used simply to denote where opposite 
magnet poles are created facing the rotor magnet. By creating electromagnet poles on 
the stator that attract and repel those of the bar magnet, the bar magnet can be made 
to rotate by successively energizing and deenergizing the phases in a process called 
commutation. 

1.5 Magnet Poles and Motor Phases 

Although the motor depicted in Fig. 1-10 has two rotor magnet poles and three stator 
phases, it is possible to build brushless PM motors with any even number of rotor 
magnet poles and any number of phases greater than or equal to one. Two and three 
phase motors are the most common, with three phase motors dominating all others. 
The reason for these choices is that two and three phase motors minimize the number 
of power electronic devices required to control the winding currents. 

The choice of magnet poles offers more flexibility. Brushless PM motors have been 
constructed with two to fifty or more magnet poles, with the most common being 
single digit values. As will be shown later, a greater number of magnet poles usually 
creates a greater torque for the same current level. On the other hand, more magnet 
poles implies having less room for each pole. Eventually, a point is reached where the 
spacing between rotor magnet poles becomes a significant percentage of the total 
room on the rotor, and torque no longer increases. The optimum number of magnet 
poles is a complex function of motor geometry and material properties. 

1.6 Poles, Slots, Teeth, and Yokes 

The motor in Fig. 1-10 has concentrated or solenoidal windings. That is, the windings of 
each phase are isolated from each other and concentrated around individual poles 
called salient poles in much the same way that a simple solenoid is wound. A more 
commonly occurring alternative to this construction is to use distributed windings 
where the windings of each phase overlap as shown in Fig. 1-11. The stator now has 
teeth that protrude toward the magnets on the rotor from an outer ring of steel called 
the stator yoke or back iron. In between the teeth are slots that are occupied by the 
windings. Each winding travels from one slot, across a number of teeth (three in this 
case), then down the next slot. The teeth enclosed by a winding forms the pole for 
that coil. When phase windings are energized individually, the rotor rotates into 
alignment with the associated magnetic poles created on the stator. Figs. l-lla,"B',and 
c show the motor with the isolated windings for phases A, B, and C respectively. The 
figures also show the magnetic poles formed at the tooth tips when each phase wind-



Figure 1-11. A motor with distributed windings. 

ing is energized. Again, the sequential energization of phase windings causes the 
rotor to rotate. To keep things visually simple, Fig. 1-11 d illustrates the completely 
wound motor. When all coils are put in place, the wound motor has two coil sides in 
each slot. While not true for many motors, each slot in this motor contains two coil 
sides from the same phase. There are no slots with coil sides from different phases. 

The rotors depicted in Fig. 1-11 are formed from circular arc shaped magnet pieces 
attached to an inner ring of steel call the rotor yoke or back iron. The magnets are mag-
netized in alternating directions as one proceeds around the rotor periphery. In this 
case, the rotors have four magnet poles as opposed to two magnet poles shown in 
Fig. 1-10. 
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The motor cross sections shown in Fig. 1-11 are more representative of actual 
motors than those shown earlier, but they are still much simpler than real motors. In 
later chapters, a variety of more practical motor construction details will be pre-
sented. 

1.7 Mechanical and Electrical Measures 

In electric motors it is common to define two related measures of position and speed. 
Mechanical position and speed are the respective position and speed of the rotor 
shaft. When the rotor shaft makes one complete revolution, it traverses 360 mechani-
cal degrees (°M) or 2n mechanical radians (radM). Having made this revolution, the 
rotor is right back where it started. 

Electrical position is defined such that movement of the rotor by 360 electrical 
degrees (°E) or 2n electrical radians (radE) puts the rotor back in an identical mag-
netic orientation. In Fig. 1-10, mechanical and electrical position are identical since 
the rotor must rotate 360°M to reach the same magnetic orientation. On the other 
hand, in Fig. 1-11 the rotor need only move 180 °M to have the same magnetic orien-
tation. Thus, 360°E is the same as 180°M for this case. Based on these two cases, it is 
easy to see that the relationship between electrical and mechanical position is related 
to the number of magnet poles on the rotor. If Nm is the number of magnet poles on 
the rotor facing the air gap, i.e., Nm= 2 for Fig. 1-10 and Nm= 4 for Fig. 1-11, this rela-
tionship can be stated as 

where 6e and 0 m are electrical and mechanical position respectively. Since magnets 
always have two poles, it is common to define a pole pair as one North and one South 
magnet pole facing the air gap. In this case, the number of pole pairs is equal to Np= 
NJ2  and the above relationship is simply 

0e = N r 9 m (1.3) 

Differentiating (1.3) with respect to time gives the relationship between electrical 
and mechanical frequency or speed as 

= Np(Om (1.4) 



where coc and com are electrical and mechanical frequencies respectively in radians per 
second. This relationship can also be stated in terms of Hertz (cycles per second) as 

fc=Hpfln  (1.5) 

where/„,= (0m/(2ri).  Later when harmonics of fe  are discussed, fc  will be called the fun-
damental electrical frequency. 

It is common practice to specify motor mechanical speed, S, in revolutions per min-
ute (rpm). For reference, the relationships among S,f„„  and fe  are given by 

* c S 

^ = 3 0 S - l o M 

N Nv 
fe  = — = — S (1.7) J e 120 60 V ; 

This last equation is useful because it describes the rate or frequency at which com-
mutation must occur for the motor to turn at a given speed in rpm. The inverse of 
this frequency gives the commutation time period, i.e., the length of time over which 
the energizing of a phase completes one cycle of operation. 

The fundamental electrical frequency/,, influences the design of the power electron-
ics used to drive the motor. As fe  increases, the power electronics must act faster to 
keep the motor shaft turning. This implies that the power electronics become more 
expensive as fe  increases. Because of this, it is common to use fewer magnet poles, i.e., 
reduce N,„, for motors designed to operate at high speeds. However, reducing N„, 
does not come without a penalty. As the magnet pole count decreases, the torque 
production efficiency drops. Therefore, one must find a compromise between power 
electronics cost and torque production efficiency when choosing the number of mag-
net poles. 

Variables such as 9 and co are used in this text both with and without various sub-
scripts to denote positions and velocities. In some situations, these variables describe 
quantities in electrical measure; in other places they describe quantities in mechanical 
measure. In all cases, the subscript e denotes electrical measure; whereas the sub-
script m denotes mechanical measure. When these subscripts are not used, the con-
text of passage where they appear clarifies their unit measure. 



A fundamental question in motor design is: How big does a motor have to be to pro-
duce a required torque? For radial flux motors the answer to this question is often 
stated as 

T = kD2L (1.8) 

where T is torque, k is a constant, D is the rotor diameter, and L is the axial rotor 
length. To understand this relationship, reconsider the motor shown in Fig. 1-10. 

First assume that the motor has an axial length (depth into page) equal to L. For this 
length, a certain torque TL  is available. Now if this motor is duplicated, added to the 
end of the original motor, and the rotor shafts connected together, the total torque 
available becomes the sum of that from each motor, namely T = T[+  T .̂ That is, an 
effective doubling of the axial rotor length to 2L doubles the available torque. Thus, 
torque is linearly proportional to L as shown in (1.8). 

Understanding the D2 relationship requires a little more effort. In the discussion of 
the wrench and nut shown in Fig. 1-4, it was stated that a given force produces a 
torque that is proportional to radius, i.e., D/2. Therefore, torque is at least linearly 
proportional to diameter. However, it can be argued that the ability to produce force 
is also linearly proportional to diameter. This follows because the rotor perimeter 
increases linearly with diameter, e.g., the circumference of a circle is equal to nD. A 
simple way to see this relationship is to compare the simple motor in Fig. 1-10 to that 
in Fig. 1-11. If the motor in Fig. 1-10 produces a torque T,  then the motor in Fig. 1-11 
should produce a torque equal to 2T  because twice the magnets are producing twice 
the force. Clearly as diameter increases, there is more and more room for magnets 
around the rotor. So it makes sense that the ability to produce force increases linearly 
with diameter. Combining these two contributing factors leads to the desired rela-
tionship (1.8) that torque is proportional to diameter squared. 

1.9 Units 

Unless specifically noted otherwise, this text utilizes the International System of  Units 
(SI units). Doing so eliminates the need for conversion factors that often complicate 
expressions and derivations. On the other hand, SI units are not universally used in 
practice. Several other systems of units are commonly used; each with its own.advan-
tages and disadvantages. It is assumed that the reader can convert the expressions 
and quantities in this text to the system of units of their choice. 



14 Chapter 1 Basic Concepts 

1.10 Summary 

This chapter developed the basic concepts involved in brushless PM motor design. 
Both radial flux and axial flux shapes were described. The relationship between 
torque and force was developed and basic properties of magnets were used to intui-
tively describe how a motor works. Along the way, the ideas of coils, windings, 

2 
phases, poles, slots, teeth, and yokes were introduced. The commonly held D L siz-
ing relationship was also justified intuitively. The purpose of the remaining chapters 
is to use and expand the intuition gained in this chapter to develop quantitative 
expressions describing motor operation and performance. 



Brushless permanent magnet motor operation relies on the conversion of energy 
from electrical to magnetic to mechanical. Because magnetic energy plays a central 
role in the production of torque, it is necessary to formulate methods for computing 
it. Magnetic energy is highly dependent upon the spatial distribution of a magnetic 
field, i.e., how it is distributed within an apparatus. For brushless permanent magnet 
motors, this means finding the magnetic field distribution within the motor. 

There are numerous ways to determine the magnetic field distribution within an 
apparatus. For very simple geometries, the magnetic field distribution can be found 
analytically. However, in most cases, the field distribution can only be approximated. 
Magnetic field approximations appear in two general forms. In the first, the direction 
of the magnetic field is assumed to be known everywhere within the apparatus. This 
leads to magnetic circuit analysis, which is analogous to electric circuit analysis. In the 
other form, the apparatus is discretized geometrically, and the magnetic field is 
numerically computed at discrete points in the apparatus. From this information, the 
magnitude and direction of the magnetic field can be approximated throughout the 
apparatus. This approach is commonly called finite  element analysis, and it embodies a 
variety of similar mathematical methods known as the finite difference method, the 
finite element method, and the boundary element method. 

Of these two magnetic field approximations, finite element analysis produces the 
most accurate results if the geometric discretization is fine enough. While the power 
of computers now allows one to generate finite element analysis solutions in reason-
able time, finite element analysis requires a detailed model of the apparatus that may 
take many hours to produce. In addition to the time involved, finite element analysis 
produces a purely numerical solution. The solution is typically composed of the 
potential at thousands of points within the apparatus. The relationship between geo-
metrical parameters and the resulting change in the magnetic field distribution are 
not related analytically. Thus many finite element solutions are usually required to 
develop basic insight into the effect of various parameters on the magnetic field dis-
tribution. Because of these disadvantages, finite element analysis is not used exten-



sively as a design tool. Rather, it is most often used to confirm or improve the results 
of analytical design work. For this task, finite element analysis is indispensable. 

As opposed to the complexity and numerical nature of finite element analysis, the 
simplicity and analytic properties of magnetic circuit analysis make it the most com-
monly used magnetic field approximation method for much design work. By making 
the assumption that the direction of the magnetic field is known throughout an appa-
ratus, magnetic circuit analysis allows one to approximate the field distribution ana-
lytically. Because of this analytical relationship, the geometry of a problem is clearly 
related to its field distribution, thereby providing substantial design insight. A major 
weakness of the magnetic circuit approach is that it is often difficult to determine the 
magnetic field direction throughout an apparatus. Moreover, predetermining the 
magnetic field direction requires subjective foresight that is influenced by the experi-
ence of the person using magnetic circuit analysis. Despite these weaknesses, mag-
netic circuit analysis is very useful for designing brushless permanent magnet 
motors. For this reason, magnetic circuit analysis concepts are developed in this 
chapter. 

2.1 Magnetic Circuit Concepts 

Basic Relationships 
Two vector quantities, B and H, describe a magnetic field. The flux  density B can be 
thought of as the density of magnetic field flowing through a given area of material, 
and the field  intensity H is the resulting change in the intensity of the magnetic field 
due to the interaction of B with the material it encounters. For magnetic materials 
common to motor design, B and H are collinear. That is, they are oriented in the same 
coordinate direction within a given material. Fig. 2-1 illustrates these relationships 
for a differential size block of material. In this figure, B is directed perpendicularly 
through the block in the z-direction, and H is the change in the field intensity in the z-
direction. In general, the relationship between B and H is a nonlinear, multivalued 
function of the material. However, for many materials this relationship is linear or 
nearly linear over a sufficiently large operating range. In this case, B and H are line-
arly related and written as 

B = nH (2.1) 

where n is the permeability of the material. 

Magnetic circuit analysis is based on the assumptions of material linearity and the 
colinearity of B and H. Two fundamental equations lead to magnetic circuit analysis. 



Figure 2-1. Differential size block of magnetic material. 

One of these relates flux density to flux, and the other relates field intensity to mag-
netomotive force. 

To develop magnetic circuit analysis, let the material in Fig. 2-1 be linear and let the 
cross-sectional area exposed to the magnetic flux density B grow to a nondifferential 
size as shown in Fig. 2-2. Accumulating all the flux densities passing through each 
differential size block gives the total flux  denoted (p.  This sum can be written as the 
integral 

(f>  = \Bz(x,y)dxdy (2.2) 

In many situations one can assume that Bz(x,y)  can be or must be assumed to be con-
stant over the cross section. Under this assumption the above integral simplifies to 

(p  = BA (2.3) 

where B is the constant flux density and A is the cross-sectional area of the block. In 
the International System of Units (SI), B is specified in Webers per meter squared 
(Wb/m ) or Tesla (T). Thus flux 0 is specified in Webers (Wb). This equation forms the 

Figure 2-2. Magnetic material having a differential length. 



first fundamental equation of magnetic circuit analysis. In Fig. 2-2, the change in the 
field intensity across the block remains equal to H, as each differential cross section 
making up the entire block has a field intensity of H, and all cross sections are in par-
allel with each other. 

Next, consider stretching the block in the z-direction as shown in Fig. 2-3. As the 
block is stretched in the z-direction, the flux 0 flows through each succeeding layer of 
thickness dz creating a change in the magnetic field intensity of H for each layer. 
Thus, the total change in the field intensity is the sum of each differential amount, 

where F is defined as magnetomotive force  (MMF) and / is the length of the block in the 
z-direction. The SI units for H is Amperes per meter (A/m) and thus MMF has the 
units of Amperes (A). Equation (2.4) defines the second fundamental equation of 
magnetic circuit analysis. 

Connecting these two fundamental equations is the material characteristic given in 
(2.1). Substituting (2.3) and (2.4) into (2.1) and rearranging gives 

(2.4) 

4> = PF (2.5) 

where 

(2.6) 

dz 

I 

Figure 2-3. A block of magnetic material. 



is defined as the permeance of the material having a cross-sectional area A, length I, 
and permeability \i. Permeance is described in units of Webers per Ampere (Wb/A) or 
Henries (H). Materials having higher permeability have greater permeance, which 
promotes greater flux flow through them. 

Equation (2.5) is analogous to Ohm's law, I=GV.  Flux flows in closed paths just as 
current does; F is magnetomotive force (MMF) just as voltage is electromotive force 
(EMF), and the conductance of a rectangular block of resistive material is identical to 
the permeance equation (2.6) with conductivity replacing permeability. 

The inverse of permeance is reluctance and is given by 

In terms of reluctance, (2.5) can be rewritten as 

which is analogous to Ohm's law written as V=IR,  with reluctance being analogous 
to resistance. At this point the analogy between electric and magnetic circuits ends 
because current flow through a resistance constitutes energy dissipation, whereas 
flux flow through a reluctance constitutes energy storage. 

Magnetic Field Sources 
There are two common sources of magnetic fields, one being current flowing in a 
wire, the other being a permanent magnet. Postponing permanent magnets until 
later, consider a coil of wire wrapped about a piece of highly permeable material, 
called a core, as shown in Fig. 2-4. Current flowing through the coil produces a mag-
netic field that can be found by applying Ampere's law. This law is stated as the line 
integral 

where C is any closed path or contour and / is the total current enclosed by the con-
tour. In this expression, H • dl is the vector dot product between the vector field 
intensity and a differential vector dl on the contour C. The direction of H with respect 
to the total current I is related by the right hand screw rule: Positive current is-defined 
as flowing  in the direction of  the advance of  a right hand screw turned in the direction in 

F = <f>R (2.8) 

I, if C encloses I 
0, otherwise (2.9) 



Figure 2-4. A coil wrapped around a piece of magnetic material. 

which the closed path is traversed. Alternately, the magnetic field produced by a current 
flowing in a wire has its direction defined by the right hand rule as shown in Fig. 2-5. 

Application of the above relationship to the contour enclosing N turns carrying a 
current of i amperes as shown in Fig. 2-4 gives 

b e d a 
I = Ni = j Hab dz + jHbcdr+j Hcd (-dz)+J*  Hda (-dr)  ( 2 .10) 

a b c d 

where Haß is the component of the field intensity coincident with the aß section of 
the contour. If the core has infinite permeability, it can be shown that the magnetic 
field is confined to the core and has a z-direction component only. For finite perme-
abilities much greater than that of the surrounding material, the field is essentially 



confined to the core also; thus all terms in the above equation except the first, are 
zero. Using this assumption, the above simplifies to 

where N is the number of turns enclosed, i is the current, and l=\b-a\. Since the 
product of the field intensity H and length I is an MMF according to (2.4), (2.11) 
implies that a coil of wire is modeled as an MMF source of value F=Ni.  This MMF 
source is analogous to a voltage source in electric circuits. Intuitively, an MMF source 
provides pressure that pushes a fluid called flux through a magnetic circuit. Since 
MMF is given by the product of current and turns, MMF is often described in units of 
Ampere-turns. However, since turns is dimensionless, it is ignored in SI units giving 
MMF units of Amperes, as discussed previously. 

It is important to note that the value of the MMF source is not a function of the 
length of the cylinder taken up by the coil. The cylinder itself must be modeled as a 
reluctance or permeance as described earlier. Hence, a practical winding about a core 
is modeled as an MMF source in series with a reluctance, as shown in Fig. 2-6. 

Air Gap Mode l ing 
In all motors, flux passes between the rotor and stator through an air gap. For this 
reason it is important to model the permeance or reluctance of an air gap. Consider 
the structure shown in Fig. 2-7 where an air gap is created between two blocks of 
highly permeable material. Flux flow, as depicted by the idealized flow lines in Fig. 
2-7, passes from one block to the other through the air gap and creates an MMF drop 
between the two blocks. The permeance of this air gap Pg is difficult to model 
because flux does not flow straight across the air gap near the edges of the blocks. 
This occurs because the air in the gap has the same permeability as the air near the 
gap, therefore some flux fringes into the surrounding air as shown in Fig. 2-7. The 
permeance of the gap depends on the exact magnetic field distribution in the gap. 
While this can be accurately computed using finite element methods, it is possible to 
approximate the air gap permeance with sufficient accuracy for many applications 
using magnetic circuit concepts. 

Depending on the degree of precision required there are a number of techniques for 
modeling flux flow in an air gap as depicted in Fig. 2-8. The simplest model, Fig. 2-8a, 
ignores the fringing flux entirely giving 

b 
(2.11) 

a 

Pga=^8 



Figure 2-7. Magnetic flux flow in an air gap between two highly permeable structures. 
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where g is the air gap length, fi0  is the permeability of free space (471-10 H/m), and A 
is the cross-sectional area of the blocks facing the air gap. A refinement of this model, 
Fig. 2-8b, which is accurate when the ratio g/A  is small, lets Pgh=n0A'/g,  where the 
length g is added to the perimeter of A giving a larger area A'. Yet another refinement 
models the fringing flux as a separate permeance in parallel with the permeance of 
the direct flux path across the air gap. One method for doing this is shown in Fig. 2-
8c. Here, the fringing flux is assumed to follow a circular arc from the side of one 
block, travel in a straight line across the gap area, then follows a circular arc to the 
other block. This is not the exact path taken by the flux. While the flux does leave a 



(a) (b) (c) 

Figure 2-8. Air gap permeance models. 

tooth perpendicular to the tooth surfaces, it does not flow through uniform width 
strips or tubes in air. It squeezes together in some areas and spreads out in others. 
Despite these differences, this circular-arc straight-line modeling allows one to 
approximate the flux flow with an analytical expression that is more realistic than 
either of the first two models shown in Fig. 2-8. 

The calculation of the air gap permeance using this approximation utilizes the fact 
that permeances add in parallel just as electrical conductances do. The air gap per-
meance PgC in Fig. 2-9 is approximately equal to the sum of Ps and four permeance 
elements labeled Pf.  While the straight line permeance Ps is computed using (2.6), the 
fringing permeance Pf requires more work. As depicted in Fig. 2-9, Py is a sum of dif-
ferential width permeances, each of length g+iix. That is, 

¡d0dA Y 1 A'o Ldx 
I 

where dA = Ldx is the cross-sectional area of each differential permeance and L is the 
depth of the block into the page. Because this equation involves the sum of differen-
tial elements, its solution is given by the integral 

p/ = 'L 0 g + 7tX  71 
1 + 

7tX 
(2.12) 



Figure 2-9. Circular-arc straight-line permeance model. 

The only unknown in this equation is X, the extent that the fringing permeance 
extends up the sides of the blocks. In those cases where X is not fixed by some other 
geometric constraint, it is commonly chosen to be some multiple of the air gap 
length. The exact value chosen is not that critical because the contribution of differen-
tial permeances decreases as one moves further from the air gap. Thus as X increases 
beyond about lOg, there is little change in the total air gap permeance. 

Slot Modeling 
Very often electrical machines have slots facing an air gap which hold current carry-
ing windings. Since the windings are nonmagnetic, flux crossing an air gap contain-
ing slots will try to avoid the low relative permeability, i.e., /i=pi0,  of the slot area. This 
adds another factor that must be considered in determining the permeance of the 
entire air gap region. 

To illustrate this point, consider Fig. 2-10 where slots have been placed in the lower 
block of highly permeable material. Considering just one slot and one tooth, there are 
several ways to approximate the air gap permeance. The simplest and crudest 
method is to ignore the slot by assuming that it contains material of equal permeabil-
ity to that of the rest of the block. In this case, the permeability is P?=/i0A/g, where A 
is the total cross-sectional area facing the gap and is given by the product of the 
width TS  and depth L. Obviously, this is a poor approximation because the relative 
permeability of the slot is orders of magnitude lower than that of block material. 
Another crude approximation is to ignore the flux crossing the gap over the slot, giv-
ing a permeance of Pg=/J0(A-As)/g,  where As=wsL is the cross-sectional area of the 
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Figure 2-10. A slotted structure. 

slot facing the air gap. Neither of these methods are very accurate, but they do repre-
sent upper and lower bounds on the air gap permeance respectively. 

There are two more accurate ways of determining air gap permeance in the pres-
ence of slotting. The first is based on the observation that the flux crossing the gap 
over the slot travels a further distance before reaching the highly permeable material 
across the gap. As a result, the permeance can be written as, Pg=fi0A/ge  where ge is an 
effective air gap length given by ge=Kcg where Kc> 1 is an air gap length correction 
factor. One approximation for Kc is known as Carter's coefficient,  which was published 
roughly a century ago. By applying a technique called conformal mapping, Carter 
was able to determine an analytic magnetic field solution. From these results, Carter 
provided tabulated values for Kc. To make the results more useful, others have per-
formed further work, which has led to analytical expressions for Carter's coefficient. 
Two such expressions are 

(2.13) 

and 
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(2.14) 

The other method for determining the air gap permeance utilizes the circular arc, 
straight line modeling discussed earlier. This method is demonstrated in Fig. 2-10fr. 
Following an approach similar to that described by (2.12), the permeance of the air 
gap over one slot pitch Ts can be written as 

P=2Pa+Pb=/u0L w +—In 
g 7t 

1 + 7tWs 

where L is the depth of the block into the page. With some algebraic manipulation, 
this solution can also be written in the form of an air gap length correction factor as 
described in the preceding paragraph. In this case, Kc is given by 

*c3 = 1 - ^ + iS - ln 
rc ktc 

1 + KWC 

4g 

-l 
(2.15) 

A comparison of (2.13), (2.14), and (2.15) shows that all produce similar air gap length 
correction factors. As illustrated in Fig. 2-11, dictates a larger correction factor 
than either of the historical Carter's coefficient expressions. In all cases, the correction 
factor increases as the slot percentage ivs/zs increases. In addition, it decreases as the 
relative gap length g/rs  increases. Both of these facts make intuitive sense since 
smaller slot openings and larger air gap lengths should require less correction 
because the influence of the longer flux path length in the slot area is decreased. 

Though not considered above, the presence of a permanent magnet across the air 
gap from the slotted structure changes the computation of Carter's coefficient. In this 
case, the air gap length g in (2.13), (2.14), and (2.15) must be replaced by g+lm/^R, 
where l m is the magnet length and [Ir is the magnet relative recoil permeability. These 
parameters are described more fully later in this chapter. 

One important consequence of slotting shown in Fig. 2-12 is that the presence of 
slots squeezes the air gap flux into a cross-sectional area (1-wJt s) times smaller than 
the cross-sectional area of the entire air gap over one slot pitch. Thus the average flux 
density B=<p/A  at the base of the teeth is greater by a factor of (1 -wjrs) \ The impor-



Figure 2-11. A comparison of Carter's coefficients. 

Figure 2-12. Flux sqeezing at the base of a tooth. 

tance of this phenomenon cannot be understated. For example, if the average flux 
density crossing the air gap is 1.0 T and slot fraction,  0^= ws/ts  is 0.5, then the average 
flux density in the base of the teeth is 2.0 T. Since this flux density level is sufficient to 
saturate (i.e.,  dramatically reduce the effective permeability) of most magnetic mate-



rials, there is an upper limit to the achievable air gap flux density in a motor. Later 
this will be shown to be a crucial factor in motor performance. 

Example 
The preceding discussion embodies the basic concepts of magnetic circuit analysis. 
Application of these concepts requires making assumptions about magnetic field 
direction, flux path lengths, and flux uniformity over cross-sectional areas. To illus-
trate magnetic circuit analysis, consider the wound core shown in Fig. 2-13 and its 
corresponding magnetic circuit diagram. 

Assuming that the permeability of the core is much greater than that of the sur-
rounding air, the magnetic field is essentially confined to the core, except at the air 
gap. Comparing the structure to the magnetic circuit, the coil is represented by the 
MMF source of value Ni. The reluctance of the core material is modeled by the reluc-
tance Rc=lcll±A, where lc is the median length of the core from one side of the air gap 
around to the other, ji is the permeability of the core material, and A is the cross sec-
tional area of the core. This modeling approximates the flux path length around 
bends as having median length. It also assumes that the flux density is uniform over 
the cross section. The reluctance of the air gap Rg is given by the inverse of the air 
gap permeance discussed earlier. 

The solution of this magnetic circuit follows Kirchhoff's laws for electric circuits 
where MMF corresponds to voltage, flux corresponds to current, and reluctance cor-
responds to resistance. Using each of the three air gap models shown in Fig. 2.8, the 
flux density B=(p/A  flowing in the circuit is 0.91T, 1.08T, and 1.09T for Figs. 2.8a, b, c 

0.5 mm 

Rc 

-M/V 

<b 
1 cm 

Figure 2-13. A simple magnetic structure and its magnetic circuit model. 



respectively, where X=10g is used for Fig. 2-8c in (2.12). Solving for the MMF across 
the air gap Fg=(j)Rs for each case and expressing the results in terms of percentages 
with respect to the MMF source of Ni=400 gives 90.5%, 88.7%, and 88.6% for the three 
respective cases. These results show that the two air gap models that include a cor-
rection for fringing lead to nearly identical results, with these results differing signifi-
cantly from the case in Fig. 2-8a where fringing is ignored. In addition, for all three 
cases, the air gap dominates the circuit because approximately 90% of the available 
magnetomotive force is required to push the flux across the air gap. 

The fact that the air gap dominates the magnetic circuit has profound implications 
in practice. For analytic work, it allows one to neglect the reluctance of the core in 
many cases, thereby simplifying the analysis considerably. The dominance of the air 
gap also implies that the exact magnetic characteristics of the core do not have a great 
effect on the solution provided that the permeability of the core remains high. This is 
fortunate because the core is commonly made from materials having nonlinear mag-
netic properties. 

Before moving on it is important to note that the magnetic circuit shown in Fig. 2-13 
ignores flux in the air surrounding the core away from the air gap. In electric circuits 
the difference in conductivity between conductors (e.g.,  wires) and insulators (e.g., 
air) is on the order of 10 . As a result, current stays confined to the conductors in an 
electric circuit. On the other hand, in a magnetic circuit the difference in permeability 
between conductors (e.g.,  cores) and insulators (e.g.,  air) is only typically on the order 
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of 10 to 10 . Therefore, some magnetic flux strays out of core material into the sur-
rounding air. Inclusion of this stray flux requires identifying the flux paths involved, 
determining a reluctance or permeance model for them, then solving the resulting 
magnetic circuit. Clearly this complicates magnetic circuit analysis immensely. For 
this reason, only dominant fringing flux is taken into account, such as that surround-
ing a primary air gap as shown in Figs. 2-8b and 2-8c. 

Magnetic circuit analysis does not lead to exact magnetic field solutions. However, 
it often leads to analytic solutions that are conducive to the formulation of design 
equations. Finite element analysis leads to much more accurate magnetic field solu-
tions because it models all flux fringing paths, but it only provides a numerical solu-
tion. In a sense, magnetic circuit analysis solves problems from a macroperspective, 
whereas finite element analysis solves problems from a microperspective. These two 
approaches complement each other. The strengths of one approach are the weak-
nesses of the other. Both are valuable in the design of brushless permanent magnet 
motors. 



2.2 Magnetic Materials 

Permeability 

As stated in (2.1), in linear materials B and H are related by, B=/iH, where /i is the 
permeability of the material. For convenience, it is common to express permeability 
with respect to the permeability of free space, o=4TI*10 H/m. In doing so, a 
dimensionless relative permeability is defined as 

(2-16) 
r-o 

and (2.1) is rewritten as B=fj.r[i0H.  As a result of this relationship, materials having 
jXr~ 1 are commonly called nonmagnetic materials, while those with much greater 
permeability are called magnetic materials. Permeability as defined by (2.1) and 
(2.16) applies strictly to materials that are linear, homogeneous (i.e.,  have uniform 
properties), and isotropic (i.e.,  have the same properties in all directions). Despite this 
fact, however, (2.1) and (2.16) are used extensively because they approximate the 
actual properties of more complex magnetic materials with sufficient accuracy over a 
sufficiently wide operating range. 

Ferromagnetic materials, especially electrical steels, are the most common magnetic 
materials used in motor construction. The permeability of these materials is nonlin-
ear and multivalued, making exact analysis extremely difficult. In addition to the 
permeability being a nonlinear, saturating function of the field intensity, the multival-
ued nature of the permeability means that the flux density through the material is 
not unique for a given field intensity, but rather is a function of the past history of the 
field intensity. Because of this behavior, the magnetic properties of a ferromagnetic 
material are often described graphically in terms of its B-H curve, hysteresis loop, 
and core losses. 

Ferromagnetic Materials 
Figure 2-14 shows the B-H curve and several hysteresis loops for a typical ferromag-
netic material. Hysteresis loops are formed by applying sinusoidal excitation of dif-
ferent amplitudes to the material and plotting B versus H. The B-H curve is formed 
by connecting the tips or extremes of the hysteresis loops together to form a smooth 
curve. The B-H curve, or DC magnetization curve, represents an average material 
characteristic that reflects the nonlinear property of the permeability, but ignores its 
multivalued property. 



Figure 2-14. Typical ferromagnetic material magnetization characteristics. 

Two relative permeabilities are associated with the B-H curve. The normalized 
slope of the B-H curve at any point is called the relative differential permeability and 
is given by 

Pd = 
1 dB 

Po dti (2.17) 

In addition, the relative amplitude permeability is the ratio of B to H at a point on the 

curve, 

Pa -—77 
Po H (2.18) 

Both of these permeability measures are useful for describing the relative perme-
ability of the material. Over a significant range of operating conditions, they are both 
much greater than one. As is apparent from Fig. 2-14, the relative differential perme-
ability is small for low field intensity, increases and peaks at medium field intensity, 
and finally decreases for high field intensities. At very high field intensities, fa 
approaches one and the material is said to be in hard saturation. For common electri-
cal steels, hard saturation is reached at a flux density between 1.7 and 2.3 T and the 
onset of saturation occurs in the neighborhood of 1.0 to 1.5 T. 



Core Loss 
When ferromagnetic materials are excited with any time varying excitation, energy is 
dissipated due to hysteresis and eddy current losses. These losses are difficult to isolate 
experimentally, therefore their combined losses are usually measured and called core 
losses. Figure 2-15 shows core loss density data of a typical magnetic material for 
sinusoidal excitation. These curves represent the loss per unit mass when the mate-
rial is exposed uniformly to a sinusoidal magnetic field of various amplitudes. Total 
core loss in a block of material is therefore found by multiplying the mass of the 
material by the appropriate data value read from the graph. In brushless permanent 
magnet motors, different parts of the motor ferromagnetic material are exposed to 
different flux density amplitudes and different waveshapes. Therefore core loss data 
as shown in Fig. 2-15 is difficult to apply to brushless permanent magnet motors. In a 
later chapter, techniques will be developed that permit utilization of sinusoidal core 
loss data for more accurate prediction of core losses in motors. Until then, it is benefi-
cial to explore the two components of core loss. 

Hysteresis loss results because energy is lost every time a hysteresis loop is trav-
ersed. This loss is directly proportional to the size of the hysteresis loop of a given 
material; and therefore by inspection of Fig. 2-14, it is proportional to the amplitude 
of the excitation. In general, hysteresis power loss is described by the equation 

Pu=k„fB" 

Frequency, Hz 



where k/, is a constant that depends on the material type and dimensions, / is the fre-
quency of applied excitation, B is the flux density amplitude within the material, and 
n is a material dependent exponent usually between 1.5 and 2.5. 

Eddy current loss is caused by electric currents induced within the ferromagnetic 
material under time varying excitation. These induced eddy currents circulate within 
the material dissipating power (i.e.,  I R losses) due to the resistivity of the material. 
Eddy current power loss is approximately described by the relationship 

Pe = keh2 f2B2 

where h is the material thickness and ke is a material dependent constant. In this case, 
power lost is proportional to the square of frequency, flux density amplitude, and 
material thickness in the plane perpendicular to the magnetic field flow. Therefore, 
one would expect hysteresis loss to dominate at low frequencies and eddy current 
loss to dominate at higher frequencies. 

The most straightforward way to minimize eddy current loss is to increase the 
resistivity of the material. This is commonly done in a number of ways. First, electri-
cal steels contain a small amount of silicon. The presence of silicon increases the 
resistivity of the steel substantially, thereby reducing eddy current losses. In addition, 
it is common to build an apparatus using laminations of material as shown in Fig. 2-
16. These thin sheets of material are coated with a thin layer of insulating material. 
Stacking these laminations together dramatically increases the resistivity of the mate-
rial in the direction of the stack. Since the insulating material is also nonmagnetic, it 
is necessary to orient the lamination edges parallel to the desired flow of flux. As 
described by the equation above, eddy current loss is proportional to the square of 
the lamination thickness. Thus, thin laminations are required for lower loss operation 
at high frequencies. 

Laminations decrease the amount of magnetic material available to carry flux 
within a given cross-sectional area. To compensate for this in analysis, a stacking factor 
is defined as the ratio of the steel cross-sectional area to the total cross-sectional area 

K - ^ 
(2.19) 

total 

This factor expresses the normalized amount of the total cross-sectional area and is 
important for the accurate calculation of flux densities in laminated magnetic materi-
als. Typical stacking factors range from 0.8 to 0.99. 



Figure 2-16. Laminated ferromagnetic material. 

Though not used extensively yet in motor construction, powdered ferromagnetic 
materials can be used to reduce eddy current loss and allow for three dimensional 
flux flow. These materials may become the material of choice some day. They are 
composed of powdered magnetic material suspended in a nonconductive resin. The 
small size of the particles used and their electrical isolation from one another dra-
matically increase the effective resistivity of the material. However, in this case the 
effective permeability of the material is somewhat decreased because the nonmag-
netic resin appears in all flux paths through the material. 

Permanent Magnets 
Many different types of permanent magnet materials are available today. The types 
available include alnico, ferrite (ceramic), samarium-cobalt, and neodymium-iron-
boron (NdFeB). Of these, ferrite types are the most popular because they are inexpen-
sive. On the other hand, the rare earth types, samarium-cobalt and NdFeB offer the 
highest performance. NdFeB magnets are more popular in higher performance appli-
cations because they are much cheaper than samarium cobalt. Most magnet types are 
available in both bonded and sintered forms. Bonded magnets are formed by sus-
pending powdered magnet material in a nonconductive, nonmagnetic resin. Magnets 
formed in this way are not capable of high performance since a substantial fraction of 
their volume is made up of nonmagnetic material. The magnetic material used to 
hold trinkets to your refrigerator door is bonded, as is the magnetic material in the 
refrigerator door seal. Sintered magnets, on the other hand, are capable of high per-



formance because the sintering process allows magnets to be formed without a bond-
ing agent. Overall, each magnet type has different properties leading to different con-
straints and different levels of performance in brushless permanent magnet motors. 
Rather than exhaustively discuss each of these magnet types, this text discusses only 
generic properties. 

Stated in the simplest possible terms, permanent magnets are magnetic materials 
with large hysteresis loops. Thus, the starting point for understanding permanent 
magnet is their hysteresis loop, the first and second quadrant of which are shown in 
Fig. 2-17. For convenience, the field intensity axis is scaled by fi0, giving both axes 
dimensions in Tesla. (Note: This also visually compresses the field intensity axis. The 
uncompressed slope of the line in the second quadrant is approximately fi0, which is 
very small.) The hysteresis loop shown in the figure is formed by applying the largest 
possible field intensity to an unmagnetized sample of material, then shutting it off. 
This allows the material to relax, or recoil, along the upper curve shown in the figure, 
which is called the demagnetization curve. The final position attained is a function of 
the magnetic environment in which the magnet is placed. 

If the two ends of the magnet are shorted together by a piece of infinitely permeable 
material (an infinite permeance) as shown in Fig. 2-18a, the magnet is said to be keep-
ered, and the final point attained is H=0. The flux density leaving the magnet at this 
point is equal to the remanence, or residual induction, denoted Br. The remanence is the 
maximum flux density that the magnet can produce by itself. On the other hand, if 
the permeability surrounding the magnet is zero (a permeance of zero) as shown in 
Fig. 2-18b, no flux flows out of the magnet, and the final point attained is B=0. At this 
point, the magnitude of the field intensity across the magnet is equal to the negative 
of the coercivity or coercive force,  denoted Hc because Hc is stated as a positive value on 

B 

Figure 2-17. The B-H loop of a permanent magnet. 
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Figure 2-18. Operation of a magnet at its (a) remanence, and (b) coercivity. 

permanent magnet specifications. For permeance values between zero and infinity, 
the operating point lies somewhere in the second quadrant, i.e., between the rema-
nence and coercivity. The magnitude of the slope of a line drawn from a point on the 
curve to the origin is known as the permeance coefficient,  denoted Pc. Therefore, in 
terms of Pc, a permeance coefficient equal to zero is operation at the coercivity B~0, H 
= -Hc, and a permeance coefficient equal to infinity is operation at the remanence B= 
Br, H=0. 

Permanent magnet materials such as samarium-cobalt and NdFeB materials have 
straight demagnetization curves throughout the second quadrant at room tempera-
hire as shown in Fig. 2-19. Some ferrite magnets have a knee or bend in their demag-
netization curve at room temperature and at low flux density values. The slope of the 
straight line demagnetization curve in the second quadrant is equal to jur, where /Jr  is 
the relative recoil permeability of the material. For ceramic, samarium-cobalt, and 
NdFeB magnets, the value of fiR is typically between 1.0 and 1.2. At higher tempera-
tures, the demagnetization curve shrinks toward the origin as shown in Fig. 2-19. As 
the demagnetization curve shrinks toward the origin, the flux available from the 
magnet drops, reducing the performance of the magnet. However, this performance 
degradation is reversible as the demagnetization curve returns to its former shape as 
temperature drops. The effect of temperature on the remanence Br is approximately 
linear, and can therefore be described by 

Br(T)=Br(T0)[l  + AB(T-T0)]  (2.20) 
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Figure 2-19. Influence of temperature ori the demagnetization curve. 

where T  is the magnet temperature, T0  is a reference temperature, Br(T0)  is the rema-
nence at T0,  and A$ is the reversible temperature coefficient. 

In addition to shrinking toward the origin as temperature increases, a knee in the 
demagnetization characteristic of samarium-cobalt and NdFeB materials may move 
into the second quadrant as shown in Fig. 2-19. This deviation from a straight line 
causes the flux density to drop off more quickly as -Hc is approached. Operation in 
the area of the knee can cause the magnet to lose some magnetization irreversibly 
because the magnet will recoil along a line of lower magnetization as shown by the 
dotted line in Fig. 2-19. If this happens, the effective Br and Hc drop, lowering the per-
formance of the magnet. Since this is undesirable, it is necessary to assure that mag-
nets operate away from the coercivity at a sufficiently large permeance coefficient Pc. 

The demagnetization curve shown in Figs. 2-17 and 2-19 is known as the normal 
demagnetization curve. This curve describes how a magnet behaves in a magnetic cir-
cuit and therefore is useful in motor design. In addition to this curve, magnets are 
also described in terms of an intrinsic demagnetization curve. This curve describes the 
inherent magnetization characteristics of the magnet independent of its environment. 
This curve is intimately related to the normal demagnetization curve, but is generally 
not directly useful for motor design. 

Finally, before moving on, it is beneficial to define the maximum energy product, as 
this specification is usually the first specification used to compare magnets. The 
maximum energy product (BH)m a x of a magnet is the maximum product of the flux 



density and field intensity along the magnet demagnetization curve. Even though 
this product has units of energy, it is not actual stored magnet energy, but rather it is 
a qualitative measure of a magnet's performance capability in a magnetic circuit. By 
convention, (BH)m a x is usually specified in the English units of millions of Gauss-Oer-
steds (MG-Oe). However, some magnet manufacturers do conform to SI units of 
Joules per cubic meter (lMG-Oe=7.958 kj/m3). For magnets with /iR« 1, (BH)m a x 

occurs near the unity permeance coefficient operating point. It can be shown that 
operation at (BH)m a x is the most efficient in terms of magnet volumetric energy den-
sity. Despite this fact, permanent magnets in motors are almost never operated at 
(BH)max  because of possible irreversible demagnetization with increasing tempera-
ture as discussed in the previous paragraph. 

Permanent Magnet Magnetic Circuit Model 
To move the magnet operating point from its static operating point determined by 
the external permeance, an external magnetic field must be applied. In a motor, the 
static operating point lies somewhere in the second quadrant, usually at a permeance 
coefficient of four or more. When motor windings are energized, the operating point 
dynamically varies following minor hysteresis loops about the static operating point 
as shown in Fig. 2-20. These loops are thin and have a slope essentially equal to that 
of the demagnetization characteristic. As a result, the trajectory closely follows the 
straight line demagnetization characteristic described by 

Bm=Br+WoHm  (2.21) 

where Hm is a negative quantity because operation is in the second quadrant. This 
equation assumes that the magnet remains in a linear operating region under all 
operating conditions. Driving the magnet past the remanence into the first quadrant 
normally causes no harm, as this is in the direction of magnetization. However, if the 
external magnetic field opposes that developed by the magnet and drives the operat-
ing point into the third quadrant past the coercivity, it is possible to irreversibly 
demagnetize the magnet if a knee in the characteristic is encountered. 

Using (2.21), it is possible to develop a magnetic circuit model for a permanent 
magnet. Let the rectangular magnet shown in Fig. 2-21, be described by (2.21). Then 
the flux leaving the magnet is 

0 = BmAm = BrAm + ^ o A m H m 

where Am is the cross-sectional area of the magnet face in the direction of magnetiza-
tion. Using (2.4), (2.5), and (2.6), this equation can be rewritten as 
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Figure 2-20. Dynamic operation of a magnet around an operating point. 

where 

1 
F. 

Figure 2-21. A rectangular magnet and its magnetic circuit model. 

= <i>r+P,nFnl (2.22) 

K = BrAm 

is a fixed flux source, and where 

P.„ = PrPoAT 

(2.23) 

,,.(2-24) 



is the permeance of the magnet. Conventionally (2.24) is called the magnet leakage per-
meance, although here it will simply be called the magnet permeance. Equation (2.22) 
implies that the magnetic circuit model for the magnet is a flux source in parallel 
with a permeance as shown in Fig. 2-21. It is important to recognize that this model 
assumes that the physical magnet is uniformly magnetized over its cross section and 
is magnetized in its preferred direction of magnetization. 

When the magnet shape differs from the rectangular shape shown in Fig. 2-21, it is 
necessary to reevaluate its magnetic circuit model In brushless permanent magnet 
motors having a radial air gap, the magnet shape may appear as an arc as shown in 
Fig. 2-22. The magnetic circuit model of this shape can be found by considering it to 
be a radial stack of differential length magnets, each having a model as given in Fig. 
2-21. During magnetization the same amount of flux magnetizes each differential 
length. As a result, the achieved remanence decreases linearly with increasing radius 
because the same flux over a increasing area gives a smaller flux density. 

To derive the magnetic circuit model for the arc-shaped magnet in Fig. 2-22, con-
sider a differential slice of radial thickness dr as shown in the figure. This slice has a 
differential reluctance of 

where L is the depth of the magnet into the page. Because reluctances add in series 
just as resistors do, the net reluctance of the magnet is given by the sum, i.e., integral, 
of each differential reluctance 

dR = = 
/uA  ßrOmL 

= dl = dr 

•dr 

Figure 2-22. An arc-shaped magnet magnetized radially. 
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The inverse of this reluctance is the magnet permeance Pm as shown in Fig. 2-21 

ln(l + ̂ ) (2.26) 
P.„ = 

Using the fact that the same flux flows through each slice during the magnetization 
process, the flux source is given by the remanence acting over the surface at r, 

<j)r = Br A = B,.L9mri (2.27) 

It is interesting to note that in the common case where l m <s: r,, the magnet per-

meance expression (2.26) simplifies to 

_ HR»0lAmri 
1 ~ 7 (2.28) 

Lm 
which is equivalent to the permeance of a rectangular block having width 9mr{ and 
length /,„. That is, the magnet appears to have a constant width given by the arc 
width at rv 

2.3 Example 

To illustrate the concepts presented in this chapter, consider the magnetic apparatus 
and circuit shown in Fig. 2-23. The apparatus consists of a permanent magnet, highly 
permeable ferromagnetic material, and an air gap. Given that the ferromagnetic 
material has very high permeability, its reluctance can be ignored, resulting in a mag-
netic circuit consisting of the magnet equivalent circuit and the air gap permeance as 
shown in the figure. 

Since the flux leaving the magnet is equal to the flux crossing the air gap, i.e., 
BmA„i=BgAs, the magnet and air gap flux densities are related by 

Bx = B»> = B»'C4> (2.29) 
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Figure 2-23. A simple magnetic structure and its magnetic circuit model. 

where Am and Ag are the cross-sectional areas of the magnet and air gap respectively 
and 

r -
(2.30) 

is the flux  concentration factor.  When Cq is greater than one, the flux density in the air 
gap is greater than that at the magnet surface. 

The flux 0 is easily found by flux division (i.e.,  just as in current division in an elec-
tric circuit), 

'' P +P 
1 g ^1 m 

If the air gap is modeled simply as Pg=/i0As/g,  then this equation can be rewritten as 

(2.31) 

Knowing 0, the MMF across the circuit as defined in the figure is 

F.= ~<t>, ~BrAr 

P +P 
1 m ^ 1 g PrMO 

L PRg 
(2.32) 



These two equations describe the flux and MMF solutions of the magnetic circuit. 
As stated, the two equations do not provide any significant insight into the operation 
of the circuit. There are simply too many variables in the equations. 

However, recognizing that Bm=<f)/Am  and Hm=Fm/lm,  the permeance coefficient 
defining the operating point is given by 

p _ ~B"> _ lm 1 

This remarkably simple result says that the ratio of the magnet length to the air gap 
length and the flux concentration factor determine the permeance coefficient. Since 
the permeance coefficient must be greater than one for safe operation of the magnet 
especially at higher temperatures, the magnet length must be significantly larger 
than the air gap length. Moreover, any attempt to increase the air gap flux density 
through flux concentration, i.e., C<p> 1, pushes the permeance coefficient lower. 

The fundamental importance of (2.33) can be seen by considering what is required 
to maintain a constant permeance coefficient as the flux concentration factor 
increases. Multiplying the numerator and denominator of (2.33) by A m A s and simpli-
fying gives 

p 

• ~ C j (2-34> 

where Vm and V̂  are the magnet and air gap volumes respectively. Now if Ĉ  is dou-
bled to 2C^ and the air gap volume remains constant, the magnet volume must 

increase by a factor of 2 =4 to maintain a constant permeance coefficient. If the mag-
net cross-sectional area remains constant, this implies that the magnet length must 
increase by a factor of 4. The implication of this analysis is that concentrating the flux 
of a permanent magnet comes with the penalty of geometrically increasing magnet 
volume. 

2.4 Summary 

In this chapter, the basics of magnetic circuit analysis were presented. Starting with 
fundamental magnetic field concepts, the concepts of permeance, reluctance, flux, 
and MMF were developed. Permeance models for blocks of magnetic material, air 
gaps and slotted magnetic structures were developed. The properties of ferromag-



netic and permanent magnet materials were discussed. A magnetic circuit model of a 
permanent magnet was introduced and the concept of flux concentration was illus-
trated. 

With this background it is now possible to discuss how magnetic fields interact 
with the electrical and mechanical parts of a motor. These concepts are discussed in 
the next chapter. 



As stated in the first chapter, the operation of a brushless permanent magnet motor 
relies on the conversion of electrical energy to magnetic energy and from magnetic 
energy to mechanical energy. In this chapter, the connections between magnetic field 
concepts, electrical circuits, and mechanical motion will be explored to illustrate this 
energy conversion process. 

3.1 Flux Linkage and Inductance 

Self Inductance 
To define flux linkage and self inductance, consider the magnetic circuit shown in 
Fig. 3-1. This circuit is said to be singly excited since it has only one coil to produce a 
magnetic field. The flux (p  flowing around the core is due to the current i and the 
direction of flux flow is clockwise because of the right hand rule. Using the magnetic 
circuit equivalent of Ohm's law, the flux produced is given by 

where R is the reluctance seen by the MMF source. Since this flux passes through, or 
links, all N turns of the winding, the total flux linked by the winding is called the flux 
linkage, which is defined as 

This expression shows that flux linkage is directly proportional to coil current. As a 
result, it is common to define the constant relating current to flux linkage as induc-
tance 

A = N<f> (3.2) 

Combining these two equations gives 

(3.3) 
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Figure 3-1. Single excited magnetic structure and its magnetic circuit model. 

J  = ~ R = M 

where P=R \ This relationship applies in those situations where the reluctance is not 
a function of the excitation level. That is, it applies when the magnetic material is lin-
ear, or can be assumed to be linear. When the material is nonlinear, inductance 
becomes a function of the excitation level. In this case, differential and average induc-
tances are defined in a manner similar to the permeability of ferromagnetic materials. 

Equations (3.2) through (3.4) define the inductance properties of a single coil. These 
relationships are used extensively in brushless permanent magnet motor design. 

Mutual Inductance 
To illustrate mutual inductance, consider the magnetic circuit shown in Fig. 3-2. This 
circuit is doubly excited because it has two sources of magnetic excitation. The flux 
created by each winding splits into two paths, one through the common center path, 
and the other through the other coil. Here the flux flowing through each coil is com-
posed of two components. By superposition, the flux fa is the sum of the flux pro-
duced by coil 1 alone, plus that produced by coil 2 alone. Likewise, the same is true 
for 02- These facts are stated mathematically as 

02=022+021 
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Figure 3-2. Doubly excited magnetic structure and its magnetic circuit model. 

where (p,j  is the flux linking the ¿th coil due to current in the y'th coil. Solving the mag-
netic circuit, these fluxes are 

0n = 

022 = 

012 = 

021 = 

Nlh 
Ri+Ri K 
<t>nK 

R1 + Rm 

011 
Rt+R,„ 

(3.6) 

where II denotes addition of reluctances in parallel, e.g., 

Ä J J ^ J ^ L . (3.7) 

By the same reasoning that led to (3.2), the flux linkage of each coil is equal to 



¿2 =N 2 0 2 =N2(022+02]) (3.8) 

Combining the above expressions leads to 

Àq — jLjî-J + L n Ì 2 

À2 = ¿21 + ¿2 '2 

where the self inductances, Lj and L2, are 

(3.9) 

L 
M -

zi . 

N 

,2=o 

u = 

„=0 

(3.10) 

and the mutual inductances are 

L -h. L12 - . 
h 

-L -h, - l 2 1 - . 
/,= 0 

N,N2RIU 

h=0 
R^+R^+R^ (3.11) 

The self inductance expressions in (3.10) are identical to (3.4) in that the denomina-
tors in (3.10) are equal to the reluctance seen by the respective coils. The mutual 
inductance (3.11) is due to the mutual coupling between the two coils. The reluctance 
Rm governs the mutual inductance. If Rm is zero, both coils see a magnetic short 
through the center path and no flux from either coil is linked to the other. Setting Rni 

to zero in (3.11) confirms this, as the mutual inductance is zero in this case. On the 
other hand, if Rm goes to infinity (a magnetic open circuit), the entire flux from each 
coil is coupled to the other, since there is no other flux path except that through the 
other coil. In this case, the mutual inductance is maximum and equal to (L\L2 )1 / 2 . 

Mutually coupled coils appear in most brushless permanent magnet motors. 
Motors typically have two or more phases, each composed of one or more coils. As a 
general rule, the self inductance of the phase windings is usually much greater than 
the mutual inductance between windings. In this case, the above derivation is easily 
generalized to include the mutual inductances between all pairs of coils. 
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Mutual Flux Due to a Permanent Magnet 
Torque production in a brushless permanent magnet motor is due to the mutual cou-
pling between a permanent magnet and one or more energized coils. Because a per-
manent magnet is not a coil, it does not have a number of turns associated with it or 
an inductance. However, it does provide flux to link another coil. To illustrate this 
concept, consider the magnetic circuit shown in Fig. 3-3. 

In this circuit, the flux leaving the magnet is linked to the coil. As a result, the flux 
linking the coil can be written as 0=0i+(pm,  where (pi  is the flux linking the coil due to 
the coil current and (f>m is the flux linking the coil due to the magnet. For the given cir-
cuit, these fluxes are 

0i = 
Ni 

R + Rm 

_ Kb 
R + R„ 

(3.12) 

As before, this flux links all N turns of the winding. Thus, the flux linkage is 

X-Li + N(j)m (3.13) 

where the self inductance follows from (3.4) as L=N /(R  + Rm). 

As an alternative to the above modeling, it is sometimes convenient to perform a 
Norton to Thévinin source transformation on the permanent magnet model as shown 
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Figure 3-3. A magnetic structure containing a magnet and a coil. 



in Fig. 3-4. After having done so, one can think of the magnet as a coil producing an 
MMF of N i mgln l n g= (¡)rRm in series with the magnet reluctance. Using this equivalent 
MMF source model, the mutual inductance modeling of the previous section applies. 

3.2 Induced voltage 

Faraday's Law 
The primary significance of flux linkage is that it induces a voltage across the wind-
ing in question whenever the flux linkage varies with time. The voltage e that is 
induced is given by Faraday's law, which states 

e = 
ctt 
dt (3.14) 

The polarity of the voltage induced is governed by Lenz's lazv, which states that the 
induced voltage will cause a current to flow  in a closed circuit in a direction such that its 
magnetic effect  will oppose the change that produces it. That is, the induced voltage will 
always try to keep the flux linkage from changing from its present value. 

Application of (3.14) to the singly-excited case (3.3) gives 

d(Li)  di .dl 
e = ——- = L— + i — 

dt dt dt (3.15) 

For constant inductances, the second term on the right hand side of (3.15) is zero, 
giving the standard electric circuit analysis relationship for an inductor. When the 
inductance varies, the second term above is not zero. This changing inductance 
occurs in structures where the path taken by the flux created by the inductor current 
changes in some way. In particular when the inductance varies as a function of posi-
tion x, then (3.15) can be rewritten as 

Q F= ¿A 

Figure 3-4. The Thévinin equivalent of a magnet. 



d(Li)  T di .dL 
e — = L 7 t + m T *  <3-16> 

where v=dx/dt  is the velocity or rate at which the inductance changes. The first term 
in (3.16) is called the transformer  voltage, and the second term is the speed voltage or 
back EMF because its amplitude is directly proportional to speed. For rotational sys-
tems, x=0and u=iwand (3.16) becomes 

d(Li)  di .dL 
e = ——- = L—+cot— (3.17) 

dt dt d6 K ' 

Based on (3.17), the electric circuit model for an inductor is shown in Fig. 3-5. 

An expression similar to (3.16) and (3.17) results when (3.14) is applied to the dou-
bly excited case (3.9) and to the permanent magnet case (3.13). Each term in these 
flux linkage equations has transformer and speed voltage terms. Of these cases, the 
permanent magnet case warrants further study. Applying (3.14) to (3.13) gives 

dl _ di .dL d(j)m  , dN 

Here there are four terms independently contributing to the coil voltage. The first 
two terms are the transformer voltage and back EMF respectively. The next to last 
term takes into account situations where the magnet moves relative to the coil caus-
ing a change in the amount of magnet flux linked to the coil. The last term considers 
the case where the number of turns linked by the magnet flux varies. Of these terms, 
the first and third most commonly appear in brushless permanent magnet motors. 

Example 
To illustrate the calculation of back EMF, consider the apparatus shown in Fig. 3-6. In 
this figure, the resistance of the conducting and sliding bars are lumped into the 

i 
. dL /"+N 

Figure 3-5. A general inductor circuit model. 
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Figure 3-6. A conceptual linear motor or generator. 

resistance R at the left. The conducting bars provide a path so that current flows 
through the sliding bar at any position. Passing through the loop formed by the resis-
tance, conducting bars, and sliding bar is an applied magnetic field having a constant 
and uniform flux density B flowing into the page. Given this setup, it is desired to 
find the back EMF induced across the resistance due to sliding bar motion. 

The flux flowing through the loop is given by <f>=BLx  where the product Lx is the 
area of the loop through which B passes. Since the loop forms a one turn coil, the flux 
linkage is equal to the flux itself, and the voltage induced is found by applying (3.14), 

dt dt dt (3.19) 

where v=dx/dt  is the sliding bar velocity. This expression is known as the BLv law. 
The polarity of this back EMF is determined by applying Lenz's law and the right 
hand rule for magnetic fields about a wire. 

Assume that the bar is pulled to the right, so that x is increasing. Then if the 
induced voltage given by (3.19) appears across the resistor with a positive potential 
at the top, a current is induced in the loop in the counterclockwise direction. By the 
right hand rule, this current creates a magnetic field that is directed out of the page 
inside the loop. This opposes the applied magnetic field and therefore agrees with 
Lenz's law. Thus the voltage is positive at the top of the resistor for increasing x and 
an applied magnetic field directed into the page. The polarity of the induced voltage 
changes if either of these conditions change. If both change, i.e., x decreases and the 
magnetic field is directed out of the page, the polarity remains the same. It is impor-
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tant to note that the magnetic field produced by current in the loop does not modify 
B in (3.19). Equation (3.19) is independent of the magnetic field produced by current 
flow. 

Operation of this structure can also be understood from an energy perspective. 
Mechanical energy input from the sliding bar creates electrical energy that is con-
verted to heat by the resistor. Although the BLv law is derived for the apparatus 
shown in Fig. 3-6, it is useful in many applications where a constant flux density 
passes through a coil. In particular, it is useful for brushless permanent magnet 
motor design. 

3.3 Energy and Coenergy 

The energy stored in a magnetic field is an important quantity to know in the design 
and analysis of brushless permanent magnet motors, as the magnetic field is the 
medium through which electric energy is converted to mechanical energy. In addi-
tion, knowing the energy or coenergy stored in a magnetic field provides one method 
for computing inductance. 

Energy and Coenergy in Singly-Excited Systems 
To illustrate the computation of energy and coenergy, reconsider the singly-excited 
magnetic circuit shown in Fig. 3-1. If one ignores resistive losses, the instantaneous 
power delivered to the magnetic field of the coil is p-ei where e and i are the instanta-
neous voltage and current respectively in the coil forming the MMF source. Using 
(3.14), this can be rewritten as 

Since power is the rate at which energy is transmitted, the energy stored in the coil 
at a time t is given by the integral of power 

where A(0) is the initial flux linkage and A(t) is the flux linkage at time t. For a linear 
magnetic circuit, i and A are related by the inductance given in (3.4). 

Substituting (3.4) into the above expression gives 

.dX_ 
(3.20) 

(3.21) 

(3.22) 



From this expression it is apparent that if the flux linkage at time t is less than the 
flux linkage at time 0, the energy supplied is negative. This implies that energy has 
come out of the magnetic field. It is customary to let the initial energy stored be zero, 
implying that A(0)=0. By doing so, the above equation describes the total energy 
stored in the magnetic field. Using this assumption, the above becomes 

where A=A(t). 

As described by (3.22), energy stored in a magnetic field can be viewed as the 
shaded area to the left of the inductance line shown in Fig. 3-7. When A(0)=0 is 
assumed, energy is simply the area of the triangle to the left of the line. 

Often times, it is convenient to express energy in terms of current rather than flux 
linkage as given in (3.23). For linear magnetic circuits being considered here, the area 
below the inductance line shown in Fig. 3-7 is equal to the area on the left. The area 
below the line is called coenergy and is given by 

rf(') 

W c = \ i m X d i (3.24) 

which upon substitution of (3.4) and z(0)=0 becomes the familiar expression 
W C =ÌL/ 2 (3.25) 
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Equations (3.23) and (3.25) define the energy and coenergy stored in a singly-
excited magnetic circuit. Before considering doubly-excited circuits, it is useful to 
express energy and coenergy in terms of magnetic circuit and magnetic field parame-
ters. Since P=fiA/l,  L=N2P, and F=Ni,  energy and coenergy can be written 
respectively as 

2 j 2 

2L 2 (N2P)  2P 
i 1 i (3.26) 

Wc = - U 2 = - ( N 2 P ) i 2 = -PF2 

C 2 2 \ ) 2 

in terms of magnetic circuit parameters. In these equations P, and F are the flux, 
permeance, and MMF associated with the coil forming the inductance L. 

These expressions can be related to the magnetic field parameters B, H and ¡1 to 
express energy and coenergy per unit volume. Since <p=BA, F=Hl, and volume is Al, 
(3.26) can be manipulated to give the energy and coenergy densities 

W  <j>2 (BA)2  B2 

iv = Al IP Al 2^A/jAl 

c Al 2AI 2 Al 

(3.27) 

Energy and Coenergy in Doubly-Excited Systems 
For doubly-excited systems such as that shown in Fig. 3-2, expressions for energy 
and coenergy are more involved because energy is stored in both the self and mutual 
inductances. In particular, the calculation of energy stored in mutual inductance 
requires more rigor than the preceding analysis. As a result, only the final result is 
given here and the interested reader is encouraged to consult other references. 

The instantaneous power delivered to the magnetic field in Fig. 3-2 is 

. dXi . dXj 
p^-g+^it (3-28) 

where the subscripts refer to the respective coils and currents are expressed iri lower 
case characters. From this expression, the energy stored in the magnetic field is 



,2 12 
W = i l l - + +^12^21, 

2L-[ L\2 
(3.29) 

where A1 1=N10n , Ai2=Ni0i2 a n d The coenergy follows as 

Lrf + i L2i*2 + hhUi (3.30) 

A comparison of (3.29) and (3.30) shows the apparent advantage of using coenergy, 
as the terms in (3.30) are much more obvious. In these equations, the first two terms 
are the energy and coenergy stored in the self inductances respectively, and the last 
term is energy and coenergy stored in the mutual inductance. 

Coenergy in the Presence of a Permanent Magnet 
Because of its importance in brushless permanent magnet motors, it is important to 
consider the coenergy stored in the magnetic field of a magnetic circuit containing a 
permanent magnet. For the magnetic circuit shown in Fig. 3-3, the coenergy stored is 

Wc = U t 2 + ^ ( R + R m ) t i l + Ni<i>m (3.31) 

where (j)m is the magnet flux linking the coil. In this expression, the first term is the 
coenergy stored in the self inductance, the second term is the coenergy stored due to 
the magnet alone, and the last is the coenergy due to mutual flux. As will be dis-
cussed next, the torque produced by a motor is composed of two components, one 
due to the self inductance terms in (3.31) and the other due to the mutual terms. In a 
brushless permanent magnet motor, the torque due to mutual terms is desired and 
that due to self inductance terms is commonly parasitic. 

3.4 Force, Torque and Power 

The torque produced by a brushless permanent magnet motor is the most important 
quantity to be determined. Torque is a measure of the turning force that can be pro-
duced in a motor and represents the fundamental specification to be met in all appli-
cations. 

Basic Relationships 
Energy in a mechanical system is called work. Work is equal to the product of force 
and distance. More accurately it is the product of the displacement of an object and 
the component of the force along the direction of displacement. Thus a differential 
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amount of mechanical energy can be written as dWm=Fdx  where Wm  is mechanical 
energy, F is the force in the x direction, and dx is a differential length in the x direc-
tion. 

Power is the amount of work done per unit time, or the time rate of change of 
energy. Thus, from the above, mechanical power is given by 

dWm  _pdx 
dt dt 

P„,= — - F—-Fv (3.32) 

where v is the velocity of motion. 

When motion is confined to rotation, one deals with torque rather than force. The 
relationship between torque and force was discussed earlier in Chapter 1 and is 
described in Fig. 1-4 and by (1.1). A tangential force F, acting at a radius r, produces a 
torque T, given by the product of the force and the length of the lever arm r over 
which the force is acting, i.e., T=Fr  . In this case, a differential amount of work is 
given by dWm=Fdx=FrdO=Tdd  where the relationship between circumferential dis-
tance and angular position x=r6 has been used. Finally, as defined earlier, the 
mechanical power is 

dwnL^Tde_ 
dt dt R..= —-T — = Tco (3.33) 

where CO is the rotational speed in mechanical radians per second, radM/s. 

Fundamental Implications 

Equations (1.8) and (3.33) play an important role in the design of motors. Since 
torque is proportional to diameter squared as stated in (1.8) and since by (3.33) 
power is directly proportional to torque, a motor having a larger diameter at which 
torque is generated will produce more mechanical power. Therefore it appears that 
motor diameter should be maximized. However, there are a number of constraints 
that limit the diameter of a motor. The most obvious constraint is the physical space 
limitations dictated by a particular application. Other constraints are volume, mass, 
and inertia. The volume of a motor increases with the square of radius or diameter. 
Thus, the ratio of output power to volume cannot be increased by increasing motor 
diameter. Since motor mass is proportional to its volume, the ratio of output power to 
mass cannot be increased either, unless the average mass density of the motor vol-
ume decreases as diameter increases. As diameter increases, it is usually possible to 
have an increasing proportion of the motor volume be composed of air. Therefore, 
some increase in power density is possible as diameter increases. The last constraint, 



inertia, is significant in applications requiring maximum torque to inertia ratio. The 
inertia of a rotor is proportional to the fourth power of its radius or diameter. There-
fore, the torque to inertia ratio of a motor decreases as the square of rotor radius. 
Clearly, in cases where the inertia is to be minimized, a large diameter must be 
avoided. 

Besides the significance of diameter, (1.8) and (3.33) indicate several other impor-
tant points. Once a diameter is chosen, there are two ways to increase the power 
developed. The first is to increase the speed at which the motor operates. In most 
applications, the load speed is specified; therefore the only way to increase power by 
increasing speed is to use some form of speed reduction between the motor and its 
load. While this is simple conceptually, speed reduction components add significant 
volume, mass, inertia, cost, frictional losses, and reduced reliability that must be 
weighed against the benefits of higher speed operation. The other way to increase 
power for a fixed diameter is to increase the force density acting on the rotor. This is 
accomplished by increasing the electrical and magnetic operating points of the motor. 
Often these are referred to as the electric and magnetic loadings respectively. Again, 
this does not come without constraints. Increasing the electrical operating point 
implies increasing the current supplied to the motor. This adds ohmic I R loss to the 
system that increases as the square of current and that must be removed from the 
system. In a brushless permanent magnet motor, increasing the magnetic field oper-
ating point requires more or higher performance magnet material, or specialized 
motor construction to focus or concentrate flux into the air gap. As was discussed 
earlier, flux concentration geometrically increases the amount of magnet material 
required. Moreover, additional ferromagnetic material is required to concentrate flux. 
Both of these increase the mass and volume of a motor. 

It should be clear from the above discussion that getting the highest performance 
out of a motor for the least cost is not simple. When high performance is required, 
many physical constraints are pushed to their limits. As a result, high performance 
motor design requires that all physical constraints be identified and included in the 
design process. Engineering practice suggests that any constraint not included in the 
design process will likely be pushed well beyond what is feasible. 

Torque From a Macroscopic Viewpoint 
There are two general ways to determine the torque produced by a magnetic field. 
The first of these is based on taking a macroscopic viewpoint, a viewpoint that uses 
the concept of conservation of energy. This method requires that all electrical, mag-
netic, and mechanical losses in the motor be modeled as being external to the motor. 
What remains is a conservative system where no energy is lost. Any added electrical 
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energy must contribute to the energy stored in the magnetic field and to the output 
mechanical energy. Stated in terms of a differential amount of added energy, conser-
vation of energy requires that dWe=dW  + dWm  where dWer  dW,  and dWm  are differen-
tial amounts of electrical, magnetic, and mechanical energies respectively. 

Based on the above expression, it is possible to show that the torque can be related 
to the rate of change of field energy as 

T = ~dW 

de 

and can be related to the rate of change of field coenergy as 

(3.34) 
A=cunstant 

T=dW" 
dd (3.35) 

i=constant 

The derivation of (3.34) and (3.35) can be found in many references, and the inter-
ested reader is encouraged to refer to them. As stated above, positive torque acts to 
decrease the stored energy at constant flux, and acts to increase coenergy stored at 
constant current. 

Equations (3.34) and (3.35) apply to the general case. When restricted to the linear 
case, these equations can be simplified. In addition, because coenergy is described in 
terms of current rather than flux linkage, (3.35) is the most convenient expression to 
use. Since both equations give the same result when appropriate substitutions are 
made, only results using (3.35) will be given here. 

Application of (3.35) to the mutual inductance case (3.30) gives 

1 ,2 ^ 1 .2 dh2 dlq2 

The significance of this equation is best discussed by considering each term individu-
ally. To do so, first assume that the system under investigation is singly excited, i.e., 
¿2=0. In this case only the first term in (3.36) remains. The first term implies that the 
torque produced is a function of the square of the applied current, and therefore is 
not a function of the direction of current flow. This makes sense since an electromag-
net will attract a piece of steel irrespective of the direction of current flow. In addi-
tion, the first term implies that positive torque, or attraction, occurs whenever ̂ induc-
tance is increasing. In other words, this torque term always acts to increase induc-

2 
tance or permeance (since L=N P) and acts to decrease reluctance. As a result, this 



term is called reluctance torque. The electromagnet example shows that this fact 
makes sense also, because the coil inductance and permeance of the magnetic circuit 
increase as the piece of steel is attracted closer to the electromagnet. 

Next, if one assumes that ^=0, rather than i2 as considered above, only the second 
term in (3.36) remains. Because of the similarity between the first and second terms, 
this torque term is also reluctance torque and has the same properties as the first 
term. 

Finally, if the self inductances Lt and L2 are both constant, only the last term in 
(3.36) remains. This term is due to the mutual flux or inductance between the two 
coils and is commonly called the mutual torque or alignment torque. This term exists 
only if there is some variation in the mutual inductance between the two coils. In this 
case, positive torque acts to increase the mutual coupling between the two coils when 
the currents have the same sign, and acts to decrease it when the currents have the 
opposite signs. With reference to Fig. 3-2, positive torque is produced when the 
mutual fluxes add, and negative torque is produced when the mutual fluxes oppose 
each other. Alternatively, this property states the well known axiom that opposite 
magnetic poles attract and like poles repel. 

Application of (3.35) to the case of a mutually coupled coil and permanent magnet, 
(3.31) gives 

^ 1 .2dl 1,2 dR ...d<p 
T = — r f—  + (3.37) 

2 d0 2 dO d6 K ' 

In this expression, the first two terms are the reluctance torque associated with the 
coil and magnet respectively, and the third term is the alignment torque due to the 
mutual flux 0 linking the magnet to the coil. The first term is identical to that in 
(3.36). The second term is a torque component proportional to the square of the flux 
leaving the magnet and is not a function of the polarity of the flux. The reason for the 
minus sign in front of this term is that inductance is inversely proportional to reluc-
tance. Thus, dL/d6  is proportional to -dR/dQ,  making the first and second terms in 
(3.37) equivalent in terms of torque production. Since the mutual flux linkage 
between the flux leaving the magnet (j) and the coil is A,„=N0, the last term in (3.37) is 
equivalent to the last term in (3.36) where Xn-Lnh 

In a brushless permanent magnet motor, the first term in (3.37) appears when 
motor construction causes the winding inductance to vary as a function of position. 
The second term describes cogging torque that appears whenever magnet flux travels 
through a varying reluctance. The final term describes the mutual torque that is used 
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to make the motor shaft turn. This last term describes the attraction and repulsion 
that occurs between electromagnets on the stator and the permanent magnets on the 
rotor. Of the three terms in (3.37), the last is desired and the first two are usually 
undesired parasitics, which must be minimized as part of the motor design. 

Force From a Microscopic Viewpoint 
As an alternative to the approach discussed above, it is possible develop an expres-
sion for mutual force based on the known interaction between a moving point charge 
and a magnetic field. This relationship is given by the Lorentz force  equation F=qvxB, 
where q is the charge value, v is the charge velocity, B is the flux density acting on the 
charge, and x denotes the vector cross product of the velocity and flux density. Using 
the definition of the cross product, the magnitude of the resulting force is 

F = qvBsirx(a)  (3.38) 

where a is the angle between the v and B vectors. The direction of the force produced 
is shown in Fig. 3-8 and is given by the right hand rule: If  the right hand is held so that 
the fingers  curl from  v to B, the extended thumb points in the direction of  F. Since maximum 
force is generated when v and B are perpendicular to each other, it is common prac-
tice to enforce this relationship in applications. As a result, a=n/2  is assumed in the 
following analysis. 

Equation (3.38) is applicable to motor design with further manipulation. Consider-
ing a differential charge element dq and expressing velocity as dl/dt,  where / is length 
along the path of motion, leads to an expression of (3.38) as the differential force pro-
duced by the differential charge, 

Figure 3-8. Graphical interpretation of the Lorentz force equation. 



Next, recognizing current as the time rate of change of charge i=dq/dt  leads to this 
expression being rewritten as dF=iBdl. Based on this expression, the total force expe-
rienced by a wire conducting a current i in the presence of a magnetic field B is given 
by the integral 

If the wire is straight and exposed to a uniform magnetic field over a length L, this 
integral has the solution 

This expression, known as the BLi law, is useful for computing the force or torque 
caused by the interaction of a magnetic field and a current carrying wire. It is impor-
tant to note that (3.41) is independent of the magnetic field produced by the current i 
and as such, (3.41) expresses a mutual force component. The magnetic field produced 
by the current i is historically known as armature reaction. The net magnetic field 
about the wire is the superposition of the external magnetic field B and that due to 
armature reaction. The presence of nonlinear magnetic material in the region where 
these two fields interact can cause superposition to be violated. In this case, the force 
generated, as given by (3.41), is dependent on the armature reaction field as well. 
Since ferromagnetic material often appears in the region where field interaction 
occurs, a potential reduction in generated force due to armature reaction must be 
considered in motor design. 

Reluctance and Mutual Torque 
Based on the preceding discussion, it is apparent that torque is generated by two dis-
tinct mechanisms. If self inductance changes as a function of position, reluctance 
torque is generated. If mutual inductance changes as a function of position, mutual 
or alignment torque is generated. Most motors are designed to develop torque using 
only one of these two torque production mechanisms. For example, induction 
motors, DC brush and brushless motors, and synchronous motors develop mutual 
torque, whereas switched reluctance motors are designed to utilize reluctance torque. 
In motors designed to produce mutual torque, reluctance torque is commonly para-
sitic. That is, any torque produced due to a variation in self inductance is undesired. 
The most common parasitic torque developed is called cogging torque, which is due 
to slots on the stator or rotor of a motor. Cogging torque is the primary ripple compo-
nent in the torque generated by a motor. In addition to cogging, there are a number 
of other sources of reluctance torque in a mutual torque motor. These sources are due 
to inevitable mechanical imperfections such as eccentricities and dimensional varia-

(3.40) 

F = BLi (3.41) 



tions. Since constant torque is usually desired from, a motor to produce smooth 
mechanical motion, parasitic torque components must be minimized. 

To illustrate the calculation of force, consider the setup shown in Fig. 3-9. This setup 
is similar to that shown in Fig. 3-6, which was used to illustrate the computation of 
back EMF. In Fig. 3-9, the voltage source creates a current in the sliding bar that inter-
acts with the magnetic field directed into the paper. As was discussed earlier, the 
motion of the sliding bar induces a back EMF ei, across the conducting bars as shown 
in the figure. 

The force on the bar in Fig. 3-9 can be found using both the macroscopic and micro-
scopic methods discussed above. Use of the microscopic method is straightforward. 
The BLi law (3.41) describes the force on the sliding bar. Using the right hand rule, 
the direction of motion is to the right. Alternatively, the direction can be computed by 
noting that the force is directed toward the area where the external field B and the 
field generated due to current flow are in opposition or where the net field is weaker. 
From the figure, the fields are in opposition to the right of the bar; thus the force is 
directed to the right. 

Based on the macroscopic coenergy method, (3.37) applies to Fig. 3-9. The last term 
in (3.37) describes the mutual torque developed between a flux and a current carry-
ing coil. For linear motion this last term can be written as 

Example 

F = Ni— 
dx (3.42) 
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Figure 3-9. A conceptual linear motor. 



where 0 is the flux linking the single turn coil. For the setup shown in Fig. 3-9, N= 1, 
and 0=BLx. With substitution of these facts into (3.42), the force on the bar is again 
described by the BLi law. 

As shown, the structure in Fig. 3-9 can operate as a motor or a generator. In fact, it 
obeys the BLi and BLv laws simultaneously. If the bar is moved by an external force 
in a direction so that eb is greater than V, current will flow into the voltage source, 
thereby making it absorb power. If no force is applied to the bar, current flow from 
the voltage source will make the sliding bar move as described previously. 

The above application illustrates an important point that is apparent when comput-
ing the electrical and mechanical power in the system. The electrical power delivered 
to the sliding bar is Pe=ebi=BLvi, where (3.19) has been used to describe the back EMF 
eb. The mechanical output power is found by applying (3.32), which gives Pm=Fv= 
BLiv. Since both the electrical and mechanical power are equal to BLvi, the output 
mechanical power is equal to the input electrical power. This relationship between 
electrical and mechanical power holds in all cases of mutual torque or force produc-
tion and is sometimes useful for finding the back EMF, torque, or force. Given either 
of these, the other can be found. For the rotational case, this relationship is given by 

ehi = Tcom  (3.43) 

where com is speed in radM/s. 

In addition to its utility in motor analysis, (3.43) has profound implications in 
motor design. According to (3.43), for a given mechanical output power, the required 
electrical input power can be composed of a high back EMF at a low current, a high 
current at a low back EMF, or some compromise in between. Of these choices, a high 
back EMF at a low current is preferred, because it minimizes the current handling 
requirements of the power electronics used to drive the motor. 

3.5 Summary 

In this chapter, the electrical and mechanical relationships important to the design of 
brushless permanent magnet motor design were developed. Since motors have mul-
tiple coils in them, the properties of self inductance and mutual inductance were dis-
closed. These properties enable the concept of flux linkage and its derivative to be 
explored. The derivative of flux linkage produces two voltages, a transformer voltage 
and a back EMF. The transformer voltage is the conventional voltage across an induc-
tor, whereas back EMF is a voltage produced due to a change in flux linkage as a 



result of motion. Since magnetic fields store energy, expressions for the energy and 
coenergy were developed for inductances, mutual inductances, and structures con-
taining both an inductance and a permanent magnet. Force and torque were shown 
to be related to the rate of change of energy or coenergy. Based on a simple example, 
conservation of energy was used to show that force or torque is related to the power 
absorbed by the back EMF of a winding. This relationship provides a simple and 
important connection between back EMF and torque, which is valuable in motor 
design. 





The design of brushless permanent magnet motors is not a simple task. On a more 
general level, motor design requires knowledge of magnetics, mechanics, thermody-
namics, electronics, acoustics, and material science. On a more specific level, it 
requires knowledge of performance requirements and constraints imposed by the 
intended motor application. Given this body of knowledge, motor design involves 
finding an optimal solution for the least cost. This text focuses on the magnetic 
aspects of motor design. Other general aspects listed above are considered in the 
design process, but detailed design information about other areas is not provided. 

4.1 Assumptions 

Besides the performance requirements discussed above, other initial assumptions are 
necessary to more clearly define and focus the initial design of brushless permanent 
magnet motors. Some of these assumptions add restrictions and others identify con-
ventional design techniques. 

Rotational Motion 
It is assumed that rotary motion is desired. While the design techniques developed 
here are easily applied to motors having linear motion, initial work will focus on 
rotary motion where the rotor is inside a stator. 

Surface-Mounted Magnets 
Most brushless permanent magnet motors have magnets mounted on the rotor sur-
face facing an air gap. For this reason, initial work will focus on this topology. In 
some motors the permanent magnets are buried within steel structures. Interior per-
manent magnet topologies generally find application for three reasons. First, by 
burying magnets, it is possible to employ flux concentration. Second, enclosing mag-
nets in steel can make the rotor structurally stronger and therefore allow operation at 
higher speeds. Finally, by burying magnets it is possible to drive a motor over a 
wider speed range through the use of field weakening control. 



4.2 Fundamental Concepts 

In brushless motor design, mutual torque and back EMF are the two fundamental 
parameters to be determined. These two parameters are intimately linked through 
(3.43), so knowledge of one provides information about the other. While the BLi and 
BLv laws can be used to determine the torque and back EMF respectively, it is more 
convenient to compute flux linkage, and then employ Faraday's law to obtain the 
back EMF. Then, (3.43) can be used to determine torque. 

Magnetic Circuit Model 
Consider the motor cross section shown in Fig. 4-1. Here the rotor contains N,„=4 
magnet poles facing the air gap. As a result there is a factor of two difference between 
electrical and mechanical measures, 6e=(Nm/2)6m.  For simplicity the stator is shown 
without slots or windings. The magnet flux leaving North poles at the air gap crosses 
over to the stator and splits into two equal sections, each traveling in the opposite 
direction and crossing the air gap toward South poles at the air gap. For one half of a 
North and South pole facing the air gap, this flux flow is illustrated by the flux path 
on the right side of the figure. Flux flowing between each of the other adjacent half 
pole pairs follows accordingly. 



In addition to the primary flux path shown, some magnet flux jumps from one 
magnet to the next in the air gap without passing into the stator, as illustrated by the 
path in the air gap on the right of Fig. 4-1. The flux that follows this path is often 
called magnet leakage flux. 

Because the flux paths shown in Fig. 4-1 repeat for every adjacent half pole pair, it is 
only necessary to model one such pair as shown in Fig. 4-2. In this figure, the rotor 
and stator steel areas are modeled simply as reluctances Rr and Rs respectively. The 
two half magnets are modeled as a flux source tpr and associated magnet reluctance 
Rm, with the direction of the flux source dictating the magnet polarity. Primary flux 
flow from the magnets across the air gap into the stator flows through the air gap 
reluctances denoted Rg. Leakage flux from one magnet to the next flows through the 
leakage reluctance R/. The three circuit fluxes are the magnet flux 0, the air gap flux 
<(>g,  and the leakage flux fy. 

Before determining a back EMF, the magnetic circuit must be solved to determine 
the air gap flux density Bg. Rather than solving the magnetic circuit as shown in Fig. 
4-2, it is convenient to simplify the circuit as shown in Fig. 4-3. Since the right magnet 
and the rotor reluctance are in series, they are swapped in Fig. 4-3c. This places the 
two half magnets next to each other and places the rotor reluctance next to the other 
reluctances. At this point it is difficult to determine an analytical description of the 
leakage reluctance. However, the percentage of flux that travels the primary flux path 
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Figure 4-3. Simplifications of the magnetic circuit in Fig. 4-2. 

across the air gap relative to the magnet flux can be estimated. That is, the air gap 
flux can be written in terms of the magnet flux as (ps=Ki<p,  where K/ is a leakage factor 
that is typically slightly less than one. Using this relationship, the next step in simpli-
fying the magnetic circuit is to eliminate the leakage reluctance Ri as shown in Fig. 4-
3b. This is possible since very little flux follows the leakage path, and it is desirable 
since it is difficult to find an expression for R/. To compensate for the flux that follows 
this leakage path, the solution for 0 will be multiplied by an estimate of K/ to obtain 
(pg. With the leakage reluctance eliminated, the rotor and stator steel reluctances are 
in series, thereby allowing them to be lumped into a single reluctance as shown in 
Fig. 4-3b as well. 



The two magnet halves in series in Fig. 4-3b can be simplified as shown in Fig. 4-3c. 
From an electrical circuit point of view, the simplified magnet shown in Fig. 4-3c is 
found by determining the Norton equivalent circuit of the two series magnet halves. 
That is, the simplified flux source is (pr since that is the flux that would flow if a 
"short" were placed across the series magnets, and 2Rm is the equivalent reluctance 
seen looking into the circuit formed by the two series magnets. From a magnetic 
material point of view, the two half magnets in series is equivalent to a single block of 
permanent magnet material having twice the length. Therefore, (¡)r remains 
unchanged but R,n doubles since reluctance is directly proportional to material 
length. 

The steel reluctance Rr+Rs in Fig. 4-3c is nonlinear because of the saturation charac-
teristic of ferromagnetic materials. Therefore, this reluctance must be eliminated in 
some way to find an analytic solution. As long as the permeability of the steel is high 
relative to air, the steel reluctance will be small relative to the air gap reluctance Rg as 
demonstrated in the example in Chapter 2. When this is true, the steel reluctance can 
be thought of as a perturbation of the air gap reluctance. That is, the steel reluctance 
can be eliminated by introducing a reluctance factor  Kr as shown in Fig. 4-3d. Here Kr 

is a constant slightly greater than one that increases the air gap reluctance slightly to 
accommodate or compensate for the missing steel reluctance. 

It is important to note that in practice one seldom tries to determine analytical 
expressions for the leakage factor K/ and reluctance factor Kr. It is simply too difficult 
to determine accurate values given the simple modeling being performed here. Their 
values are usually chosen based on the experience of the designer. 

Magnetic Circuit Solution 
Given the magnetic circuit in Fig. 4-3d, the magnet flux 0 can be expressed using flux 
division as (i.e.,  as in current division between resistors in an electrical circuit) 

Based on and general expressions for the magnet and air gap reluctances, i.e., 

2 Rm 

2 Rm +2 KrRg •m (4.1) 

R =—— 
ni , 

iuRPo/im 
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(4.2) 

the air gap flux can be written as 



(4.3) 

where lm and Am are the magnet length and cross-sectional area respectively, and g 
and Ag are the air gap length and cross-sectional area respectively. Substituting the 
flux  concentration factor  C<p=Am/Ag  from (2.30), the flux density relationships Bs=(j)g/Ag 

and Br=(pr/Amr  and the permeance coefficient from (2.33) as Pc=/m/(gQ) i n t o ( 4 - 3 ) 
gives an air gap flux density of 

This equation describes the air gap flux density crossing the air gap. For the motor 
being considered here with surface magnets, the leakage factor is typically in the 
range 0.9<K/<1.0, the reluctance factor is in the range 1.0<Kr<1.2, and the flux con-
centration factor is ideally 1.0. If one considers these values to be fixed and the rema-
nence Br to be fixed by the magnet choice, the permeance coefficient Pc determines 
the amplitude of the air gap flux density. As the permeance coefficient increases, the 
air gap flux density approaches a maximum that is slightly less than the remanence. 
Without flux concentration, it is not possible to achieve an air gap flux density Bg 

greater than Br Moreover, the relationship between permeance coefficient and air 
gap flux density is nonlinear. The air gap flux density approaches the remanence 
asymptotically. Doubling Pc does not double However, doubling Pc means dou-
bling the magnet length, which doubles its volume and associated cost. For typical 
parameter values, Fig. 4-4 demonstrates the relationship between permeance coeffi-
cient and the ratio Bg/Br,  where the vertical lines mark the typical four to six per-
meance coefficient range used in many motor designs. 

The flux density in (4.4) defines an approximation to the air gap flux density over 
the surface of the magnet pole. That is, (4.4) gives the amplitude of the air gap flux 
density IB Î as shown in Fig. 4-5. Over North poles, (4.4) gives the positive ampli-
tude, and over South poles, (4,4) gives the negative amplitude. While this approxima-
tion is far from exact, the derivation of (4.4) provides valuable insight into motor 
operation, and (4.4) itself illustrates fundamental principles that exist even when 
more accurate modeling is performed. 

B 
(4.4) 
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Figure 4-4. Relationship between normalized air gap flux density and permeance coefficient. 

Figure 4-5. Ideal air gap flux density distribution. 

For convenience, the horizontal axis in Fig. 4-5 is described in of terms electrical 
measure, which is periodic with respect to one pair of poles as shown in the figure. 
For the prototype motor being considered here, there are two electrical periods 
around the circumference of the rotor. 



Flux Linkage 
Given the solution of the magnetic circuit, consider the addition of two slots contain-
ing a winding composed of N turns of wire as shown in Fig. 4-6. The winding forms 
a coil that comes out of the slot at the top of the figure and goes into the slot on the 
right. The coil pitch or coil throw is 180°E or 0p=27t/NmradM,  which is said to be a full 
pitch winding. As the rotor turns, the air gap flux links this coil. For the rotor position 
shown in Fig. 4-6, the flux flows toward the South pole of the rotor magnet across the 
air gap from the coil. This flux flow direction is the opposite of that produced by cur-
rent flowing in the coil, so the flux linkage is negative. If (j)g is the air gap flux as given 
in (4.3), the flux linkage at this position, designated 0e=0, is A=-N0?. 

If the rotor turns 90°E as shown in Fig. 4-7, the coil is centered over one half of a 
South pole and one half of a North pole. Over the South pole the flux flows toward 
the rotor, while over the North pole the flux flows away from the rotor. The net flux 
linked by the coil is the sum of these two components, which is zero. 

Rotating the rotor another 90 °E to a position 0t,=18O°E, as shown in Fig. 4-8, the coil 
is now centered over a North pole. The flux linked at this position is equal in magni-
tude to the flux linked at the Qe=0 position shown in Fig. 4-6, but the direction is 
opposite. Therefore, the flux linkage is positive. 

At intermediate points between 0°E and 180°E the flux linkage varies linearly 
between the minimum at 0°E and the maximum at 180°E. Likewise, as the rotor 

Figure 4-6. Motor having one full-pitch coil. 



Figure 4-7. Motor with rotor at 90°E. 

rotates past 180°E toward 360°E, the flux linkage falls linearly from the maximum at 
180°E back toward another minimum at 360°E. Further rotor rotation creates a peri-
odic flux linkage waveform as South and North poles alternately link the coil as 
shown in Fig. 4-9a. 



(a) 
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Figure 4-9. Flux linkage and back EMF as a function of rotor position. 

Back EMF and Torque 
From the flux linkage waveform shown in Fig. 4-9a, the associated back EMF is the 
derivative of the waveform as dictated by Faraday's law. Since the flux linkage is tri-
angular in shape, the back EMF has a square wave shape as shown in Fig. 4-9b. The 
period of the back EMF is 360 °E, thereby justifying the definition of electrical meas-
ure in Chapter 1. Analytically, the back EMF is given by 

dX dde dX dX N d X Nm 2Ntf> 
eb = — = —i = co, = —^co... = ——a>„. - .. (-\ 

! dt dt d0c L d6e 2 dQe 2 7i  (4'5> 

where com is the rotor speed in radM/s. To simplify this further, the air gap flux can be 
written as 

2 jt 
= B s A g = BSRroep Lsl = LstRw ( 4 . 6 ) 



where Bg is the air gap flux density (4.4) as modified by Carter's coefficient (2.13) or 
(2.14) to take into account the slotting, 6p is the angular pole pitch in radM, Rr0 is the 
air gap radius at the magnet surface, and Lst is the axial length of the motor. Substi-
tuting this relationship into (4.5) yields the amplitude of the back EMF 

I I r Nm 2 N ' 
I K 

This expression agrees with the BLv law. The factor 2N is due to the two slots each 
having N conductors, and Rrocon, is the linear velocity at which the flux linkage 
changes. As shown on the right in (4.7), all terms in this expression except for com 

form a back EMF constant Ke, whose units are V/(radM/s). 

Application of (3.43) to (4.5) and (4.7) determines the torque produced by a current 
i flowing in the coil. Because (3.43) is a simple algebraic relationship, for constant cur-
rent the torque versus position shape is the same as that for the back EMF versus 
position as shown in Fig. 4-%. The amplitude of the torque is given by 

\T\ = 5± = 2NBgLstRroi  = Kti ( 4 8 ) 

All terms in this expression except for Rro represent the force experienced by the 
rotor. This force acting at the radius Rro gives the torque according to (1.1). From a 
different point of view, all terms in (4.8) except for i, form a torque constant Kt, whose 
units are N-m/A. By comparing this torque constant to the back EMF constant 
described earlier, they are seen to be the same quantity, i.e., 

Ke=Kt=2NBgLstRro  (4.9) 

and they are numerically equal provided the units of all terms are interpreted consis-
tently, as they are in SI units. 

The flux, flux linkage, back EMF, and torque described in this section represent an 
ideal situation. In reality, the air gap flux density does not have a square wave shape 
as shown in Fig. 4-5. As a result, the flux linkage does not exhibit the ideal triangular 
shape shown in Fig. 4-9fl, and so the back EMF is not a square wave as shown in Fig. 
4-9b. Much more rigor is required to accurately determine these waveforms.-At the 
same time, the preceding analysis provides significant insight into motor operation. 

2 TV 
N,„ 

BgLstRro = 2 NBgLstRrocûm=Keù)„ (4.7) 



Two more common and more realistic sets of waveforms are shown in Fig. 4-10. 
Because of flux leaking from magnet to magnet, motors having full pitch windings 
like those considered in this chapter typically exhibit a more trapezoidal back EMF 
waveform as shown by the lighter curves in the figure. Other motors are designed so 
that the flux linkage, back EMF, and torque are sinusoidal, which are shown by the 
darker curves in the figure. These motors typically do not have full pitch windings. 

Multiple Coils 
The motor shown in Figs. 4-6 through 4-8 is not very efficient because room exists for 
more coils. The flux from three magnet poles goes unused at all times. To increase the 
motor performance, three more full pitch coils can be added as shown in Fig. 4-11. In 

Figure 4-10. More typical motor waveforms. 



Figure 4-11. A motor containing four full-pitch coils. 

this figure, two more slots are added, making room for the new three coils. Now each 
slot contains two coil sides rather than one. The first coil remains unchanged. Start-
ing with the first coil and moving counterclockwise around the stator, each succes-
sive coil is wound in the opposite direction as the last. In this way, the flux linked to 
each coil is the same as the preceding coil because the North and South magnet poles 
alternate as well. 

At this point there is flexibility about how the individual coils are connected. With 
four coils, several possibilities exist. In all cases, the collection of connected coils is 
called a phase winding or simply a phase. 

In most cases, all coils in a phase are connected in series. That is, the end of one coil 
is connected to the start of the next coil. When this is done the back EMFs of each coil 
add together to become the net back EMF for the entire winding. Since the back EMF 
for each coil has an identical shape, the back EMF amplitude (4.7) simply changes to 

Eb = 2 Nm NBg Lst Rwco„, (4.10) 

where Nm=4 in this example. Similarly, the amplitude of the torque scales by Nm, 

\T\ = 2NmNBgLitRJ  -(4.11) 



This expression confirms that T=kD2L  as given by (1.8). One diameter D appears as 
the radius Rw; the other is implied by the number of magnet poles N„„ and L appears 
directly as Lst. 

4.3 Multiple Phases 

The motor considered in the preceding section and shown in Fig. 4-11 is a single 
phase motor. This motor type does not appear in many applications because it is not 
possible to produce torque at all rotor positions. Once every 180°E the back EMF and 
torque cross through zero. At these points, the motor cannot produce torque. Moreo-
ver, if the motor comes to rest at these points, the motor cannot be started without 
physically rotating the shaft to a nonzero torque point. 

To eliminate this problem and to make it easier to produce constant torque, brush-
less permanent magnet motors contain more than one phase winding, with the indi-
vidual phase windings oriented so that their zero crossing points in the back EMF 
and torque are uniformly distributed over an electrical period. Most brushless per-
manent magnet motors have three phases, and some have either one or two phases. 
Because the number of power electronics devices needed to drive a motor increases 
with the number of phases, it is very uncommon to see a motor having more than 
three phases. Only at very high power levels where multiple banks of power elec-
tronic devices are required does it make sense to use more than three phases. 

The motor shown in Fig. 4-11 can accommodate two additional phase windings, 
each composed of four coils in the same way that the first phase winding has four 
coils. The resulting three phase motor is shown in Fig. 4-12, where A, B, and C desig-
nate the phases. To avoid making the figure visually confusing, Fig. 4-12 shows only 
one coil for each phase. The rest are identified by the phase labels near each slot. 

The phase A winding shown in Fig. 4-12 matches the phase winding described ear-
lier in Fig. 4-11. Since there are three phases, the zero crossings of the back EMF and 
torque are separated by (360°E)/3, which is 120°E or 60°M. Therefore the slots for 
phase B are rotated 60°M from the corresponding slots of phase A, and the slots of 
phase C are rotated 60°M from the corresponding slots of phase B. This arrangement 
places slots around the circumference of the stator every 30°M as shown in the fig-
ure. The resulting phase waveforms are shown in Fig. 4-13. Since the rotor is 
unchanged, the flux linkage, back EMF, and torque of phase B will have the same 
shape as corresponding phase A waveforms, but will be delayed by the 120°E offset 
due to the 120 °E offset in slot placement. Likewise phase C waveforms look like 
phase A waveforms displaced by 240 °E. 



Figure 4-12. A three phase motor. 
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4.4 Design Variations 

The motor considered in the preceding section had full pitch coils as well as magnet 
poles that spanned 180°E. In addition, all four coils in each phase were aligned with 
each other. That is, the back EMFs of each coil of a given phase were in phase align-
ment with one another. As a result, when the coils were connected in series, the net 
back EMF had the same shape as that for a single coil but had an amplitude four 
times larger. While these properties make the motor relatively easy to analyze, rela-
tively few real motors are constructed with these properties. In this section, varia-
tions in these parameters are studied. 

Fractional Pitch Coils 
When the coil pitch differs from 180°E, the winding is called a fractional  pitch winding. 
To see how a fractional pitch winding influences the back EMF and torque, consider 
the motor shown in Fig. 4-14. Here the rotor remains unchanged, but the coil spans 
an angle of 0C= 120°E, called the angular coil pitch, where the coil pitch factor  is 
defined as ac=6c/6p. At the initial position 0e=O shown in the figure, the flux linkage 
is smaller in amplitude than the full pitch case by the coil pitch factor. 

When the rotor rotates to 0e=60°E or ;r/3radE as shown in Fig. 4-15, the flux linkage 
increases from the minimum to zero since an equal amount of flux travels both ways 
through the coil. When the rotor reaches 0C.=12O°E or 2^/3radE as shown in Fig. 4-16, 



Figure 4-15. Motor with rotor at 60°E. 

Figure 4-16. Motor with rotor at 120°E. 

the flux linkage reaches a maximum since the coil faces only the North magnet pole. 
In addition, the flux linkage remains at the maximum until 0C=18O°E, whereupon it 
starts decreasing through zero to the minimum again. Continuing to rotate the rotor 
allows the flux linkage waveform to become known. Figure 4-17 shows the flux link-



Figure 4-17. Flux linkage and back EMF for the fractional pitch coil case. 

age and resulting back EMF for this case superimposed on the associated waveforms 
for the ideal full pitch case. The back EMF now has segments over which it is zero. 
These zero segments are associated with position ranges over which the flux linkage 
does not vary. Since the back EMF and torque have the same shape, the torque has 
zero segments as well. 

As before, three of the four magnets in this motor are not being used for torque pro-
duction. Therefore, to improve motor performance, coils should be added to interact 
with the other magnets. If coils having the same fractional pitch are used, they must 
be placed in appropriate locations around the stator so that the back EMF of each coil 
adds constructively to the net back EMF. Using the rotor pole transitions as a guide, 
Fig. 4-18 shows a possible placement for the other coils. One side of each coil is 
aligned with a magnet pole transition, and every other coil is wound in the opposite 
direction. If all coils are connected in series to form a phase winding, the back EMF 
will have the same shape as that shown in Fig. 4-17, but will have an amplitude Nm 

times larger. 

Fractional Pitch Magnets 
Magnets seldom span a full pole pitch of 180°E because flux at the transitions 
between North and South poles does not contribute to torque, but rather travels 



Figure 4-18. A motor containing four fractional pitch coils in one phase. 

directly from one pole to the other without linking to coils in stator slots. As such, 
magnet material is wasted if full pitch magnets are employed. 

To understand the impact of fractional pitch magnets, consider the full pitch coil 
motor shown in Fig. 4-19. Here, there are gaps between the magnet poles containing 
nonmagnetic material. Therefore, the angular magnet pitch 6 m is smaller than the 
angular pole pitch 6p. As a result, the magnet and air gap cross-sectional areas are 
equal to RroOmLst rather than Rr0GpLst. The air gap flux density expression in (4.4) still 
applies, but describes the flux density in the air gap over the magnet surface only. 
Under the conditions assumed here, no flux crosses the air gap over the gaps 
between the magnets. 

The procedure for computing the flux linkage, back EMF and torque is unchanged. 
For any given rotor position, compute the flux linked to the stator coil. By identifying 
key positions where flux transitions occur, the flux linkage can be plotted. Differenti-
ating the flux linkage gives the back EMF, which has the same shape as the torque 
produced by the coil under constant current conditions. Performing these steps for 
the motor shown in Fig. 4-19 leads to the waveforms shown in Fig. 4-20, where the 
waveforms for this case are superimposed on the associated waveforms for the ideal 
full pitch magnet and coil case. 



Figure 4-19. A motor having fractional pitch magnets. 

Figure 4-20. Flux linkage and back EMF for the fractional pitch magnet case. 

Fractional Slot Motor 

The motor shown in Fig. 4-12 has Ns= 12 slots, Nm=4 magnet poles, and Nph=3 phases. 
This classifies the motor as having Nm,=Ns/Nin/Nph=l  slot per pole per phase. Even 



though not all slots are shown, the motor in Fig. 4-18 has slots distributed equally 
every 30°M around the stator as well, so it has Nspp= 1 too. In Fig. 4-18, the winding is 
fractional pitch, but the slots are distributed just as they are in Fig. 4-12. 

When Nspp is an integer, the motor is said be an integral slot motor, and when Nspp 
has a fractional part, the motor is said to be a fractional  slot motor. Note that there is a 
distinction between a motor having fractional pitch windings and a fractional slot 
motor. The first characterizes the windings; the second characterizes the slots that 
contain windings. 

In an integral slot motor, the back EMFs of all coils making up a phase winding are 
in phase with each other, even if the winding itself is fractional as shown in Fig. 4-18. 
However, in a fractional slot motor, the back EMF of coils making up a phase wind-
ing are not all in phase with each other. Therefore, connecting all coils in series does 
not produce a back EMF that is simply equal to an amplitude-scaled version of the 
back EMF of one coil. In fractional slot motors, the net back EMF has a different 
shape as well as a different amplitude. It is this feature of fractional slot motors that 
lets the designer shape the back EMF. 

To understand how a fractional slot motor differs from an integral slot motor, con-
sider the motor shown in Fig. 4-21, which has Ns= 15 slots, N,„=4 magnet poles, and 
Nph=3 phases. For this motor, the number of slots per pole per phase is Nspp= 1.25 and 
the angular slot pitch ds is 360°M/NS=24°M or 48°E. 

Figure 4-21. A fractional slot motor. 



Because the slot pitch is not a integral subdivision of the angular pole pitch 6p, it is 
not possible to use full pitch coils. In fact, by inspection it is not obvious how the 
motor should be wound. If a coil spans three slots, the angular coil pitch will be 
3-48 °E or 144°E. On the other hand, if a coil spans four slots, the coil pitch will be 
4-48 °E or 192°E. A three slot coil span is less than 6>/(=180oE, and a four slot coil span 
is greater than 0/;=18O°E. 

Postponing winding layout design to a later chapter, Fig. 4-22 shows a valid wind-
ing layout for phase A of the motor. Since there are 3 phases, 15 slots, and each coil 
fills a net one slot (i.e.,  each coil side fills one half slot), there are Ncph=NJNph=  15/3=5 
coils per phase. Each coil in the figure spans three slots, so the coil pitch or throw is 
three slots. 

Based on the procedure demonstrated previously, Fig. 4-23 shows the flux linkage 
and back EMF for the coil labeled Ca . The other coils have the same span as coil Q, 
so their individual flux linkage and back EMFs have the same shape and amplitude, 
but are shifted in phase based on their angular position relative to coil Ca. As shown 
in Fig. 4-22, the center of coil Q, is offset 4 slots from the center of coil Ca, making 
0^=4-48 °E=192 °E. Similarly, 0£J(-=7-48oE=336°E, 0(irf=8-48°E=384°E/ and 0„e=1148°E= 
528°E. Furthermore, coils Cb and Ce are wound in the opposite direction, so their 
back EMF has the opposite sign of that of coil Ca. 

Figure 4-22. Phase A winding for a 4 pole, 15 slot motor. 
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Figure 4-23. Flux linkage and back EMF of coil C a . 

Based on this information, if ea(0)  is the back EMF shown in Fig. 4-23 for coil Ca, 
then the back EMF for the other coils are related to the back EMF of phase A by the 
phase shifts -ea(d-l92°),  ea(0-336°),  e„(0-384°), and -en(d-528°)  for coils Cb, Cc/ Cd, 
and Ce respectively. If the five coils are connected in series the net winding back EMF 
is given by the sum of the individual back EMFs, 

e(O) = ea{0)-ea(O-l9T)  + ea(O-336°)  + ea(6-384°)~ea  (6-528") 

= ea(d)  + ea(G-lT)  + ea(e  + 24°) + ea(d-24°)  + ea(d  + ir) ( 4 ' 1 2 ) 

where the properties -/(0)=/(0±18O°) and f(6)=f(d±360°)  were used to simplify the 
first expression. This equation shows that the net winding back EMF is the sum of 
five phase A back EMFs respectively shifted by 0, ±12°E, and ±24°E. 

With the phase A back EMF shown in Fig. 4-23, Fig. 4-24 shows the net winding 
back EMF. The first five waveforms are the individual coil back EMFs, and the last is 
the net back EMF. The final result looks much more sinusoidal than the individual 
coil back EMFs. In fact, the net back EMF of an actual four pole, fifteen slot motor 
looks very sinusoidal due to the inherent leakage flux that is ignored in this analysis. 
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Figure 4-24. Sum of coil back EMFs to get net winding back EMF. 

4.5 Coil Resistance 

Multiple coils connected together to form phases are a basic part of all motors. Coils 
have two electrical properties, namely resistance and inductance. Of these, resistance 
is straightforward to describe, whereas inductance is harder to describe especially 
when mutual inductance is present as is common in motors. 

Resistance is a property of all materials. It represents a measure of how much the 
material resists the flow of current. For conductive materials such as copper, the 
resistance R of a block of material in ohms (Q) is given by 



where p is the resistivity of the material in £2-m, I is the material length along the 
direction of current flow, and A is the cross-sectional area through which current 
flows. In general, material resistivity is a function of temperature, with resistivity 
increasing exponentially with increasing temperature. For copper and aluminum 
wire, resistivity versus temperature is approximated by the linear relationship 

p(T)  = p(T0)[l  + a(T-T0)]  (4.14) 

where Tis temperature, T0  is a base temperature, and a is the thermal resistivity coef-
ficient. For copper, the parameters in this equation are commonly chosen as T0=20°C, 

—8 —3 
p(T0)=1.7241  -10 Q-m, and a=4-10 . As material temperature increases over 100°C, 
this expression increasingly underestimates resistivity. Given a, copper wire resis-
tance increases 4% for each 10°C; therefore a wire at 120 °C has 40% greater resis-
tance than it does at 20 °C. 

On the basis of the above relationships, coils in motors are most commonly com-
posed of multiple turns of round insulated wire as shown in Fig. 4-25. The center-
most circle in the figure is the bare conductor having diameter dwi} and cross-sectional 
area Awb, The next outer layer is the wire insulation, which is commonly available in 
three thicknesses, single, double (or heavy), and triple. The final outer layer is an 
optional layer of bonding material. This bonding layer is commonly composed of an 
adhesive that serves to bond layers of wire together after coils are formed. As shown 
in the figure, dwc and Awc are the covered wire diameter and cross-sectional area 
respectively, including the bonding layer. 



Several standards exist for classifying wire according to diameter. One common 
standard is American Wire Gage (AWG). In AWG, standard wire diameters form a 
geometric progression described by the relationship 

dwb = 8.251463(0.8905257)° (4.15) 

where G is the integer wire gage, and dwb is the bare wire diameter in mm. There is 
an inverse relationship between wire gage and diameter. As the gage increases, the 
diameter decreases. Alternatively, as the gage increases, the resistance per unit length 
increases. The inverse of the above relationship is 

* ( 8.251463 ] (4.16) 
log (0.8905257) 

Because AWG is based on a geometric progression, wire gages are related to each 
other by ratios as shown in Fig. 4-26. This figure plots resistance relative to a wire 
having any gage G to wires having gages G, G+l, etc. The most notable point on the 
curve appears at G+3. A wire of gage G+3 has twice the resistance of a wire of gage G. 
So two wires of gage G+3 taken in parallel have the same resistance as one wire of 
gage G. Other important points appear at G-l and G+l. At G+l, resistance is approxi-
mately 26% greater than that at G. So increasing the wire gage by one, increases resis-
tance and I2R losses by 26% provided current remains constant. Alternatively, at G-l, 
resistance decreases approximately to about 79% of that at G. Therefore, decreasing 
the wire gage by one, decreases the I2R losses for fixed current to 79% of what they 
are at G. 

The current capacity of the wire depends on its cross-sectional area and its thermal 
environment. The heat density in a resistance, i.e., I2R loss per unit volume, is equal 

to p/2, where J  is the current density in the material. Based on experience, the maxi-
2 

mum allowable current density varies roughly between 1 and 10Arms/mm . Using 
these limits as a guideline, Fig. 4-27 shows the allowable RMS wire current versus 
wire gage. In confined volumes with little thermal conductivity, the lower limit of 
1 Arms/mm2 may be too high. Similarly, if wire is actively cooled, 10 Arms/mm" may 
be overly conservative as an upper limit. It is interesting to note that the rated current 
for 14 gage household wiring is 15 Arms, which corresponds to a current density of 

2 
7.2 Arms/mm". 
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Figure 4-26. Relative wire resistance versus wire gage. 
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Figure 4-27. Current capacity versus wire gage. 

In motor design, computing coil resistance is simply a matter of applying (4.13) 
through (4.16) and taking into account the added diameter of the insulation and 
optional bonding material. Since the insulation and bonding thicknesses do not fol-



low a geometric progression, (4.15) or a similar equation cannot be used to compute 
the covered diameter dwc. The single, double, and triple insulation thicknesses and 
the bonding thicknesses do not conform to any smooth function with respect to wire 
gage, so they are best determined by consulting a manufacturer's wire table. 

4.6 Coil Inductance 

Inductance is not usually a critical parameter in brushless permanent magnet motors. 
Inductance determines the time constant of the windings, and therefore, determines 
the rate at which winding currents can change. Modern power electronic control 
techniques that rely on current control principles are relatively insensitive to the 
exact inductance value. As a result, inductance calculations are often simplified to 
produce analytical inductance estimates. If greater accuracy is required, 
three-dimensional finite element analysis is required. 

When a coil is placed in stator slots, its inductance changes dramatically compared 
to its inductance when surrounded by air. Computing coil inductance is a matter of 
determining the magnetic field created by coil current and then relating this field to 
inductance through the use of (3.4). Alternatively, inductance can be computed by 
equating the coenergy stored in an inductance (3.26) to the coenergy stored in the 
field created by the coil (3.27). That is, inductance can be found by solving 

for the inductance L, where V is the volume containing the field. 

In addition to self inductance as described above, mutual inductance exists between 
the coils in a given phase as well as between the coils in different phases. Mutual 
inductance between coils in a given phase is considered here, but mutual inductance 
between coils in different phases is not. Because mutual inductance between phases 
is small relative to self inductance (e.g.,  around 10%) and because mutual inductance 
requires much more careful computation using these same general procedures, it will 
not be considered here. 

When coils are placed in slots, the coil inductance has three distinct components 
due to the three distinct areas where significant magnetic field is created by coil cur-
rent. These three areas are the air gap, the slots, and the end turns. The ferromagnetic 
portions of the motor do not contribute to the inductance as long as their relative per-
meability is high. Moreover, magnet flux does not contribute to inductance because 
inductance relates coil current to the flux linkage created by the coil current acting 

(4.17) 



alone. From the coil's perspective, the magnets are simply blocks of material having 
relative permeability of 

Air Gap Inductance 
To illustrate the computation of inductance, consider the 4 pole, 12 slot motor having 
full pitch windings as shown in Fig. 4-11. The air gap inductance component is due 
to the flux crossing the air gap. As a result, the air gap flux must be found using a 
magnetic circuit model. This circuit must model the MMF produced by the stator 
coils and ignore the flux source in the magnet model. Figure 4-28 shows the associ-
ated magnet circuit model, where Rg is the air gap reluctance over one pole pitch, Rm 

is the magnet reluctance, and Ni is the MMF source associated with each coil. The 
polarity of each MMF source corresponds to the application of the right hand rule to 
each coil. 

Letting the outer ring be the reference node, identifying Fr as the MMF at the center 
node, and setting the sum of the fluxes leaving the center node to zero (i.e.,  Kirch-
hoff's current law applied to flux) gives 

0! + 0 3 - 0 4 = 0 
Fr + Ni Ni - Fr 

Rg+Rm Rg+Rm 

| Fr + Ni Ni - Fr _Q 

Rg+Rm Rg + Rm 
(4.18) 

Figure 4-28. Magnetic circuit model for the computation of air gap inductance. 



Simplifying the last expression leads to the result Fr=0, which implies that 

(4.19) 

Therefore, the net flux linked by all four coils is 

(4.20) 

where Nm=4 is the number of coils (and magnet poles). Using the definition of induc-
tance (3.4), the air gap inductance is 

Using expressions for the magnet and air gap reluctances (4.2) and the air gap cross-
sectional area Ag= Lst6pRro=(27z/Nm)LstRro,  where Lst is the axial motor length and Rro 

is the air gap radius as shown in Fig. 4-6, yields 

where N is the number of turns per coil. This air gap inductance assumes that all four 
coils are connected in series and is therefore the air gap inductance of the complete 
phase winding. This expression applies to all full pitch winding cases since Nm does 
not appear in (4.22). In addition, the air gap inductance is proportional to the rotor 
surface area, since 2nRroLsl appears in the numerator. The denominator is the mag-
netic length from the stator surface through the air gap and magnet to the rotor yoke. 

Modifications to the above equation are required when the individual coils are con-
nected in parallel or in some combination of series and parallel. These modifications 
are covered later in this chapter. 

Slot Leakage Inductance 
In addition to the air gap, coil current produces a magnetic field that crosses from 
one side of a slot to the other as shown in Fig. 4-29. This field makes sense when one 
considers that a magnetic field circulates around conductors, which in this case are 

I  - * = 

8 i V R < " (4.21) 

7 _ 2Kl-loLst  Rro  k j 2 
8 I 

(4.22) 



Figure 4-29. Slot leakage flux. 

carrying current into the page. The figure does not depict the magnetic field in the 
teeth and stator yoke because the field intensity H is near zero as a result of the high 
relative permeability assumed for the ferromagnetic portions of the motor. For sim-
plicity, this figure depicts a slot in a linear motor. The analysis that follows applies to 
rotational motors, with the associated coordinate system changes. This figure 
includes narrow slot openings between shoes that taper back to the stator teeth. 

The inductance component that results from the magnetic field that crosses the slot 
in the y-direction is commonly called the slot leakage inductance. Computation of this 
component requires more work than calculating the air gap inductance because the 
magnetic field linking the coil is not constant over the cross section of the coil, rather 
it is approximately linear with respect to slot depth, which can be described as 

H „ M = 
(2N)i  x 

wsb ds 
(4.23) 

where the slot is assumed to contain two coil sides each having N turns. As stated, 
the field intensity Hy is zero at the slot bottom because no current is enclosed. As x 
increases, more current is enclosed. Finally, when all the current is enclosed at x-ds, 
the field intensity reaches its maximum value equal of H^Ni/w^. In the shoe area, 
the field intensity has a constant amplitude equal to this maximum value. 

Computing the inductance in this coil area of the slot requires using the coenergy 
relationship (4.17). In this case, the volume integral is the slot volume occupied by 
the coil. Performing the required integration and solving for the inductance gives the 
coil area leakage inductance of 



hrn 
3 w sb 

(4.24) 

where Lsi is the axial length of the slot. It is interesting to note that this expression 
matches the fundamental relationship Lca=N2P where P in this case is the effective 
permeance of the slot, often called the slot permeance coefficient.  Because the winding 
is assumed to be uniformly distributed over the slot, the effective permeance is one 
third of the standard or normal permeance of the slot. 

Because the field intensity is constant over the shoe area, the inductance of this area 
can be approximated using the fundamental N P relationship. Doing so and includ-
ing the coil area term leads to a total per-slot slot leakage inductance of 

=(2 N f PodsLsl H0dtLs 

_ 3wsb {wso  + wsb )/2 
(4.25) 

where the first term inside the brackets is the effective permeance of the coil area, the 
second term is an approximate permeance for the tapered area, and the last term is 
the permeance of the shoe tip area. For the full pitch winding being considered, there 
are N„, slots each having the slot leakage inductance (4.25). Taking this into account 
gives the slot leakage inductance of the winding as 

Ls=Nm(2NY PodAt PodtLs Vodsh  LSI 
3™sb (wso  + wsb )/2  VJS 

(4.26) 

End Turn Inductance 
The end turn inductance is the only remaining inductance component. This induc-
tance is created by the magnetic field that surrounds a coil after it leaves one slot and 
before it enters another slot. Because the end turn layout is subject to few restrictions, 
a set magnetic field distribution is difficult to define. As a result, the end turn induc-
tance is often a rough approximation. The approach followed here is to use the 
coenergy relationship (4.17) and to assume that the magnetic field is distributed in 
the same way as it is about an infinitely long cylinder having a surface current i, as 
illustrated in Fig. 4-30. For this configuration, the circumferential field intensity is 

He = 
2 nr (4.27) 



Figure 4-30. Magnetic field about a cylindrical conductor. 

for r greater than the radius of the conductor Rc. For a conductor of length le, a radius 
r>Rc, and total current equal to Ni, the inductance is 

Consider the geometry shown in Fig. 4-31. The end turns are semicircular with 
radius equal one half the mean coil pitch xcp, the radius r is equal to tcp/2;  and 
because there are two coils per slot, the end turn bundle has a cross-sectional area 
equal to one half the slot cross-sectional area As. The end turn inductance for one end 
turn bundle having N turns is 

L-i—— In — 
In R.. 

1 

(4.28) 
" / 

Ali Cp . CI) 
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(4.29) 
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Since there are 2N,„ end turn bundles per phase winding and there is no mutual cou-
pling between the end turns of other coils in the same phase, the total end turn 
inductance per phase is 

k> = In JÎÂ; (4.30) 

Given (4.22), (4.26) and (4.30), the net phase winding inductance with all coils con-
nected in series is the sum of the three fundamental components, 

Lpi, - Lg +LS + Le (4.31) 

4.7 Series and Parallel Connections 

In the preceding sections, back EMF, resistance and inductance were computed 
under the assumption that all coils in a phase are connected in series. This arrange-
ment occurs in the majority of motor designs. Occasionally, the coils are connected in 
other ways. For example, if there are four coils per phase, they can be connected in 
three different ways: all coils in series, all coils in parallel, and combinations of two 
coils in series connected in parallel with the other two coils connected in series. Of 
these combinations, by far the most common is all coils in series, followed by all coils 
in parallel. Only in exceptional circumstances are coils connected in combinations of 
series and parallel. 

The overwhelming choice of all coils in series is due to the interaction of the indi-
vidual coil back EMFs. When all coils are connected in series, the phase back EMF is 
simply the sum of the individual coil back EMFs. For coils having identical phase 
relationships such as in Fig. 4-11, this means scaling the amplitude of the coil back 
EMF by the number of coils. For coils having different phase relationships, this addi-
tion changes the shape of the back EMF as well, as illustrated in Fig. 4-24. 

When coils are connected in parallel, the coil back EMFs can create circulating cur-
rents that contribute to I R losses but do not provide beneficial torque production. To 
understand how this occurs, consider the circuit model for two coils in parallel as 
shown in Fig. 4-32«. Each coil has an associated resistance, inductance, and back 
EMF. By ignoring the external connections, the circuit simplifies to that shown in Fig. 
4-32£>. The two inductances and two resistances add, and the two back EMF sources 
subtract. When the two coil back EMFs have the same amplitude and phase relation-
ships, i.e., they are instantaneously identical, the combined back EMF e\-e2 is equal to 
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Figure 4-32. Two coils connected in parallel. 

zero and no current ic circulates around the loop from one coil to the other. However, 
if the individual coil back EMFs are not instantaneously identical, the combined back 
EMF e\-e2 is nonzero and current ic circulates around the loop independent of any 
current applied to the parallel coils during motor operation. 

For example, if the back EMFs ea(0-24°)  and ea(6+  24°) for the four pole, fifteen slot 
motor shown in Fig. 4-24 are connected in parallel, their difference is nonzero as 
shown in Fig. 4-33. This back EMF difference creates a circulating current that flows 
through the resistance R1+R2, creating an undesirable I R loss. 

To avoid circulating currents and their associated loss, only coils having identical 
back EMFs can be connected in parallel. For most motor designs this is not possible 
and therefore parallel-connected coils do not appear often in practice. In the unusual 
case when the number of turns cannot be decreased to lower the back EMF ampli-
tude, parallel coil connections must be accepted. In this case, the undesirable I R loss 
must be accepted or the motor design must be restricted so that the back EMF of 
individual coils are identical. 

In the situation where all coils in a phase are connected in parallel, the resistance 
and inductances are modified from their previously computed expressions which 
applied to all coils connected in series. The resistance relationship between all coils in 
series versus all coils in parallel can be determined from Fig. 4-34. The resistors on 
the left represent n individual coil resistances connected in series, whereas the resis-
tors on the right represent the n individual coil resistances connected in parallel. 
When the coils are identical, all the coil resistances have identical values. If Reqs is the 
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Figure 4-33. An example of coil back EMFs that lead to circulating currents. 
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Figure 4-34. Coil resistances in series and in parallel. 

equivalent resistance of all coils connected in series and Reqp is the equivalent resis-
tance of all coils connected in parallel, then Reqp is related to RecjS by 

R. cqp _ R/n  _ 1 
R. eqs 

TIR (4.32) 

where R is the resistance of each coil. Therefore, conversion of phase resistance com-
puted as all coils in series to all coils in parallel requires division by the square of the 
number of coils, or number of  parallel paths. 

Since inductances add in series and parallel in the same way that resistances do, 
conversion of phase inductance computed with all coils in series to all coils in paral-



lei should follow the same relationship given in (4.32). Indeed, this is true if all the 
coil inductances are independent of one another; that is, they do not share common 
flux. However (4.32) does not apply if the coils share common flux, as is the case for 
the air gap and slot components of the phase inductance. 

Rigorous computation of the phase inductance for coils connected in parallel 
requires significant effort to keep track of components that share mutual flux and 
those that do not. Given the infrequency of connecting coils in parallel, the fact that 
inductance is a less critical aspect of motor design, and that some inductance compo-
nents require significant approximations for their computation, it is common to 
forego the needed rigor and simply use (4.32) to approximate the phase inductance 
of all coils connected in series to all coils connected in parallel. This mutual flux issue 
becomes even more complicated when combinations of series and parallel connec-
tions among coils are implemented in a motor design. 

As a final thought on coil connections, it is interesting to note that connecting coils 
in series or in parallel has no influence on the electrical time constant r=L/R  of a 
phase winding. That is, assuming (4.32) holds for both phase resistance and phase 
inductance, the time constant of the phase winding does not change no matter how 
the coils are connected to form a phase winding LeCjS/RC(jS=Letjp/Reqr.  As a result, there 
is no incentive to connect coils in a way that differs from all coils in series to achieve a 
different time constant. 

4.8 Armature Reaction 

Armature reaction refers to the magnetic field produced by ampere-turns Ni in the 
stator slots and its interaction with the permanent magnet field. For example, the air 
gap flux due to coil current was illustrated earlier in the section on air gap induc-
tance. The flux that crosses the air gap due to coil current in the four pole, twelve slot 
motor is given by (4.19). Dividing this expression by the cross-sectional area of the 
magnet surface through which this flux flows gives the armature reaction flux den-
sity in the air gap. Because the magnet recoil permeability is near one and the magnet 
length is larger than the air gap length, the armature reaction flux density in the air 
gap of a motor with surface-mounted magnets is usually small under normal operat-
ing conditions, e.g., usually less than ten percent of the air gap flux density due to the 
permanent magnet. 

In addition to the air gap flux created, coil current produces additional flux in the 
stator shoes and teeth. Once again, in common motor designs, this flux is signifi-
cantly lower than the shoe and tooth flux coming from the rotor magnets. 



Ideally; the magnetic field distribution within the motor is the linear superposition 
of the magnetic fields due to the permanent magnets and the coil currents. In reality, 
the presence of saturating ferromagnetic material in the stator can cause these two 
fields to interact nonlinearly. When this occurs, the performance of the motor dimin-
ishes. 

Generally speaking, as long as the stator teeth and shoes are not highly saturated 
due to the permanent magnets acting alone, armature reaction is not a problem. The 
greatest concern with respect to armature reaction normally occurs under fault con-
ditions. If the power electronics used to drive the motor enters a fault condition 
where the motor currents exceed their normal range by an order of magnitude or 
greater, the armature reaction magnetic field can become large enough to demagnet-
ize the rotor magnets. 

4.9 Slot Constraints 

Slot Fill Factors 
The use of slots to hold coils places fundamental constraints on motor design. These 
constraints are best understood by considering the representative slot shown in Fig. 
4-35. It is readily apparent from the figure that round wire cannot fill the slot entirely. 
Gaps exist between wire turns and the nonuniform slot shape limits the ability to 
place turns uniformly. As a result, it is convenient to relate the slot cross-sectional 
area to the wire cross-sectional area by defining a bare wire slot fill  factor 

Kb - ~7 (4.33) 



where As is the slot cross-sectional area, N is the number of turns in the slot, and Au,b 

is the bare wire cross-sectional area. In addition, it is convenient to define a covered 
wire slot fill  factor 

NAU!C 

(4.34) K = 
UK 

where Awc is the covered wire cross-sectional area. Clearly, wire insulation takes up 
nonzero space, Kwb<Kwc. For rectangular slots uniformly filled with wire stacked in 
rows and columns, there is an upper limit to Kwc. As shown in Fig. 4-36, the upper 
limit is given by the ratio of the covered wire cross-sectional area to that of the square 
area enclosing it. That is, 

K, K*/2) 3 
79% (4.35) 

In practice, the achievable slot fill factors are dependent on the technology used to 
wind coils within slots or insert preformed coils into slots and the price one is willing 
to pay. The achievable slot fill is also decreased by the presence of slot liners, i.e., the 
addition of insulating material to the inner slot surface to eliminate abrasion and 
electrical shorts between motor windings and the stator laminations. Without incur-
ring extreme cost, it generally possible to achieve in the neighborhood of Kwb=50% 
and Ku,c=60%, depending on the motor size, slot shape and number of turns. 

Slot Resistance 
Based on the above relationships and the resistance relationship (4.13), the total resis-
tance in a slot of length Lst, containing N turns connected in series is 

Klot = 
PNLst  PLstN< 
A I db Kw bA s 

(4.36) 

Figure 4-36. Covered wire and the square enclosing it. 



This equation shows that coil resistance is proportional to the number of turns 
squared. Since all components of coil inductance are proportional to N as well, the 
electrical time constant r=L/R of windings is independent of the number of turns, 
provided the slot fill and slot cross-sectional area remain fixed. For example, a coil 
formed from N turns of gage G wire and a coil formed from 2N turns of gage G+3 
wire (i.e.,  wire having one half the cross-sectional area) will have the same time con-
stant since the resistance and inductance both increase by a factor of four. 

2 
The power dissipated as heat by the coil resistance, i.e., the I R losses, are also inde-

pendent of the number of turns N. Using (4.36), the I R losses per slot are given by 

P - j2n _ ,2 pNLst 

'slot-1 slot - 1 A ^ (4.37) 

where I is the RMS current in the wire. By defining the RMS conductor current den-
sity as ]=I/Awb  and identifying the bare copper volume in the slot as Vwh=NLstAwiu 

(4.37) can be written as 

Psiot = PKJ2  (4-38) 

This equation confirms that the I~R losses in a winding are independent of N, and 
therefore, there is no way to manipulate N to improve motor efficiency. Moreover, 

2 3 

dividing both sides of (4.38) by Vwi„ gives a slot heat density of p/ in W/m which 
was cited earlier in the discussion of wire capacity versus wire gage as shown in Fig. 
4-27. 
Wire Gage Relationships 
Given a constant slot fill factor, a fixed slot cross-sectional area, and the wire gage 
relationships (4.15) and (4.16), it is possible to relate the relative number of turns that 
fill a slot to relative wire gage. The number of turns that fit in a slot is inversely pro-
portional to wire cross-sectional area or the wire gage. Figure 4-37 depicts this rela-
tionship. For example, if N turns of gage G fill a slot, then approximately 26% more 
turns of wire gage G+l fill the slot equally well. 

In addition, it is possible to relate relative coil resistance to relative wire gage. This 
relationship is shown in Fig. 4-38. For example, if the coil resistance using wire of 
gage G is R, then increasing the wire gage to G+l, increases the resistance by about 
59% to approximately 1.59R. 



Wire Gage 

Figure 4-37. Relative number of turns required to fill a slot equally well. 

Wire Gage 

Figure 4-38. Relative slot resistance for a fixed slot area and fill factor. 

Constancy of Ni 

A further constraint imposed by fixed slot cross-sectional area is the constancy or 
invariance of the product Ni. This product is the MMF produced by a coil having N 



turns, each carrying a current of i. Based on the bare wire slot fill factor (4.33) and the 
current density relationship, the product Ni is equal to 

This equation shows that Ni is a constant set by the bare wire slot fill factor and the 
slot current density. When N increases by some factor, the wire cross-sectional area 
and resulting current decrease by the same factor. The constancy of Ni implies that 
neither N nor i can be changed independently to maximize torque as given by (4.8). 

4.10 Torque Constant, Back EMF Constant, and Motor Constant 

The specification sheets for brushless permanent magnet motors often cite values for 
the torque constant Kt=T/i  and the back EMF constant Ke=Eh/(om,  but few provide val-
ues for the motor constant Km. Of these specifications, the torque constant is gener-
ally the least useful and most deceiving. At first glance it appears that a larger torque 
constant means that more torque can be obtained for the same amount of current. 
However, for a given rotor and stator, the constancy of Ni implies that this is not true. 
Increasing the torque constant by increasing N does not increase the torque capabil-
ity of a motor since any increase in N forces the current i to decrease correspondingly. 

In the selection of a motor, the back EMF constant is generally more useful because 
it does not involve the current i. For a given rotor and stator, the back EMF constant 
scales linearly with N. As a result, by winding the motor with different gage wires 
and keeping the slot fill factor constant, smaller diameter wires make room for 
greater numbers of turns N. As a result, different back EMF constants are obtained. 
Therefore, in practice, the back EMF constant and rated application speed are used to 
set the peak back EMF voltage to some level just under the voltage available from the 
power electronics used to drive the motor. Once the back EMF constant is deter-
mined by the power electronics, the torque constant is set because of their equiva-
lence as given in (4.9). (Note that motor specification sheets do not demonstrate this 
equivalence because the torque constant and back EMF constants are specified using 
inconsistent conditions and inconsistent units.) 

Since the torque constant and back EMF constant vary with N and the product Ni is 
constant, they are not good indicators of motor performance. A more useful perform-
ance indicator is motor constant, which is defined as 

Ni = NAwbJ  = KwbAs] (4.39) 

T 
(4.40) 
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As stated, the motor constant expresses torque efficiency, which is different from 
power efficiency. Motor constant describes how efficiently a motor produces torque 
as a function of the I R losses incurred in the production of that torque. That is, 
motor constant is related not only to the desired motor output, but is also inversely 
proportional to the cost of producing that output. 

Since torque is proportional to current and power is proportional to current 
squared, using the square root of power in (4.40) allows current to cancel from the 
ratio. As a result, motor constant is independent of current and the number of turns 
N, and remains unchanged as long as the slot fill factor is fixed. Therefore, motor 
constant provides a good indication of motor performance. 

To illustrate these facts, consider the ideal torque produced by one coil filling two 
slots as given in (4.8) and having twice the total resistance of one slot (4.36). Substi-
tuting these expressions into (4.40) and simplifying gives 

_2NBgLstR„I  _ 2 NBsLstRro  _ BgRn 

m " ^ Z ) - J2PLstN/Awb  - V (4-41) 

where Vn,b is the bare wire volume contained in the two slots. This result confirms 
that the motor constant is independent of number of turns N as well as current. A 
family of motors constructed from a given rotor and stator will produce torque with 
equal efficiency as long as the total volume of bare wire remains unchanged. As N 
increases, the torque per ampere (i.e.,  torque constant) increases, but simultaneously 
the resistance increases with the square of N, so the motor constant is unchanged. 

Torque efficiency as described by (4.41) is proportional to the air gap flux density, 
the rotor outside radius, and the square root of the wire volume. The air gap flux 
density can be increased by decreasing the air gap length, increasing the magnet 
length, (both of which imply increasing the permeance coefficient) or by using a 
more powerful magnet. The air gap length can only be decreased so far before manu-
facturing tolerances make it impossible to maintain a consistent air gap. Therefore, 
once the air gap is minimized, one must buy more magnet material or buy more 
powerful magnet material to increase torque efficiency. 

Increasing the rotor outside radius increases the motor constant but requires that 
the stator diameter increase to maintain the wire volume. If the stator diameter is 
constant, increasing the rotor outside radius has little affect on the motor constant. If 
the rotor outside radius is fixed, increasing the wire volume means increasing the 
outside stator diameter or increasing the slot fill factor. Increasing the slot fill factor 



alone is usually difficult because it becomes increasingly expensive to pack more and 
more wire into slots, especially as one gets closer to the theoretical maximum. 

4.11 Torque per Unit Rotor Volume 

In Chapter 1, it was argued that torque is proportional to rotor volume as stated in 
(1.8) as T=kD L. In this expression k is the only unknown. For a given rotor volume, 
its value determines the quality of a motor design. Rather than try to determine k 
specifically, it is beneficial to determine the torque produced per unit rotor volume. 
To do so, consider the torque produced by the motor shown in Fig. 4-11, whose phase 
torque is given by (4.11). Based on (4.11) the torque per unit rotor volume is 

|T| _ 2NmBgNi 
TRV  ~ n 2 r ~ n (4.42) JcRtUt  nRrn K > 

This expression is directly proportional to k in (1.8). For a fixed air gap radius Rro, the 
torque produced per unit rotor volume is directly proportional to the air gap flux 
density Bg, the number of magnet poles Nm, and the coil ampere-turns Ni. If the sta-
tor volume is fixed, Ni is a constant, thereby making Nm and Bg responsible for maxi-
mizing the torque per unit rotor volume. As with the motor constant, the air gap flux 
density plays a crucial role in determining performance. Increasing Bg means 
decreasing the air gap length, or increasing the quality or quantity of magnet mate-
rial used. 

The torque per unit rotor volume describes the amount of torque available from a 
given rotor volume. As such, it is a common measure for comparing motors and for 
initial motor sizing for a given application. Even more common is the use of the air 
gap shear stress, which is the tangential force per unit rotor surface area. This meas-
ure is often easier to visualize and is very simply related to the torque per unit rotor 
volume. Using (1.1) and (4.11), the air gap shear stress is given by 

F NmBgNI  ^ Ktrv 

a~2nRroLst~ kRw ~ 2 ( 4 - 4 3 ) 

While this expression applies to the ideal conditions implied by (4.11), the air gap 
shear stress provides a useful comparative measure. Often the air gap shear stress is 

2 
expressed in lbf/in (psi). When expressed in these units, low cost brushiess perma-



nent magnet motors typically exhibit a shear stress in the range 0.5<a<2, higher cost 
motors are in the range 1.5<G<3, very high performance motors are typically in the 
range 2<a<10, and large liquid cooled motors can be in the range 10<a<20. From 
(4.43) it is clear that the number of magnet poles, the air gap flux density, and the coil 
ampere turns Ni are important quantities. In low performance motors, these values 
are compromised to reduce cost, whereas in high performance motors, they are 
pushed to achieve performance. 

4.12 Cogging Torque 

As described in Chapter 1 and illustrated in Figs. 1-6 and 1-7, cogging torque 
describes the interaction of the rotor magnets acting on the stator teeth or poles inde-
pendent of any current. Mathematically this torque was described as part of the gen-
eral torque expression (3.37). While this torque is often considered beneficial in step 
motors, it is considered detrimental in brushless permanent magnet motors. 

This dissatisfaction with cogging torque often lacks quantitative support. One of 
the first things engineers invariably do when they pick up a small motor is to spin 
the shaft with their fingers. The pulsations felt during this process are caused by cog-
ging torque. In comparing several motors based on this qualitative examination, 
engineers will judge the one with the least cogging torque the best, even if it per-
forms the worst in the actual motor application. 

In reality, cogging torque is often very small relative to the beneficial mutual torque 
produced by a motor. Furthermore, even a slight mismatch between the back EMF of 
the motor and the motor current often produces greater ripple torque than the cog-
ging torque itself. In this situation, cogging torque is masked by the larger torque 
variation in the mutual torque. As a result, the qualitative shaft spin test is often mis-
leading. 

Despite the insignificance of cogging torque in many applications and in the pres-
ence of mutual torque ripple due to back EMF-current mismatch, cogging torque is a 
motor characteristic worth understanding. Simply put, cogging torque is the torque 
created when the rotor permanent magnets attempt to align themselves with a maxi-
mum amount of ferromagnetic material. This is visually obvious for simple struc-
tures such as that shown in Fig. 1-6, but is more difficult to visualize for common 
motor structures despite the fact that the same fundamental phenomenon is occur-
ring. 

To understand cogging torque, consider the cogging torque term from (3.37) 



(4.44) 

where (p is the magnet flux crossing the air gap and R is the total reluctance through 
which the flux passes. Clearly, if the reluctance R does not vary as the rotor rotates, 
the derivative in (4.44) is zero and the cogging torque is zero. In addition, cogging 
torque is independent of flux direction because the magnet flux 0 is squared. 

To illustrate how (4.44) applies to more common motor structures, consider the four 
pole, twelve slot motor considered earlier and as shown in Fig. 4-39. As each magnet 
in the motor rotates past the stator teeth, the reluctance experienced by the magnet 
under the slot openings changes because of the longer flux path length into the slots 
terminating on the shoes. Therefore, the slot openings create a varying reluctance for 
the magnet flux, thereby creating cogging torque. If the stator teeth did not have 
shoes, such as the motor shown in Fig. 1-11, the reluctance variation and resulting 
cogging torque would be much greater. Thus, the primary purpose for shoes is cog-
ging torque reduction. 

Shoe design represents a fundamental tradeoff. The narrower the slot opening wso, 
the smaller the cogging torque becomes. In the limiting case, if there was no slot 
openings, cogging torque would be zero. On the other hand, the slot opening must 



be wide enough to insert coils, with the cost of inserting coils being directly propor-
tional to the slot opening width. As a rule of thumb, the slot opening must be at least 
two to three times the covered diameter of the wire placed in the slots. A side effect 
of making the slot opening narrow to minimize cogging torque is that doing so 
increases the slot leakage inductance component of the winding. 

The radial dimension of the shoes also plays a role in cogging torque production. If 
the radial shoe dimension, e.g., dsb in Fig. 4-29, becomes too small, the ferromagnetic 
shoe tips become saturated by the magnet flux, thereby adding another varying com-
ponent to the reluctance that produces cogging torque. In general, the radial shoe 
dimension is determined by manufacturing considerations. When stator laminations 
are cut or stamped it is difficult to form areas having width less than one to two 
times the lamination thickness. Therefore, the lamination thickness places a lower 
limit on the shoe radial dimension. 

Since reluctance is given by R=l//iA,  reluctance is directly proportional to length I. 
This fact leads to a more subtle way to minimize cogging torque. Over the stator 
teeth the flux path length is equal to the air gap length g, whereas over the stator slots 
the length is g+ls where ls is the additional flux path length experienced by flux enter-
ing the slot opening. Using the circular arc, straight line flux path approximation 
developed in Chapter 2, LS has a maximum of approximately LS.MAX=  TUOSJ4,  where zvso 

is the slot opening. Using this approximation, the flux path length from the magnet 
to the stator varies from g to g+mvso/4.  Therefore, minimizing this variation mini-
mizes the reluctance variation and the resulting cogging torque. Minimizing the slot 
opening wso minimizes this flux path length variation and minimizes cogging torque. 
In addition, increasing the air gap length g relative to the slot opening decreases the 
flux path variation and decreases cogging torque. If the air gap length is increased, 
the magnet length must be increased by the same percentage to keep the permeance 
coefficient Pc and resulting air gap flux constant. If the air gap flux decreases, the 
cogging torque will decrease due to the drop in flux as well, but the desired mutual 
torque will diminish as well, leading to lower motor performance. 

Since each magnet produces cogging torque as it passes by stator slots, the relation-
ship between the number of magnet poles and the number of stator slots influences 
cogging torque. In integral slot motors such as the four pole, twelve slot motor 
shown in Fig. 4-39, each magnet appears in the same position relative to the stator 
slots. As a result, the cogging torque created by all magnets are in phase with each 
other, and the net cogging torque is equal to the product of the number of magnet 
poles and the cogging torque created by one magnet. That is, the cogging torque 
from each magnet simply adds to create the net result. 



On the other hand, in fractional slot motors such as the four pole, fifteen slot motor 
shown in Fig. 4-40, each magnet appears in a different position relative to the stator 
slots. As a result, the cogging torques created by all magnets are out of phase with 
each other, and the net cogging torque is reduced since the cogging torque from each 
magnet adds together and at least partially cancels the cogging torque from other 
magnets. This fact is one of the primary reasons for choosing a fractional slot motor. 

The final fundamental way to decrease cogging torque is also based on the dR/dd 
term in (4.44). The reluctance R describes reluctance that extends along the axial 
direction of the motor as well. From this point of view, the net change in reluctance 
can be minimized, despite the slot openings, if the slot openings are spread out over 
the surface area of the magnet as depicted in Fig. 4-41. Here, the slots are skewed so 
that each magnet sees a net reluctance that stays the same or nearly the same as slots 
pass by. In this way, changes along the axial dimension are used to diminish the 
effect of changes along the circumferential dimension. As a result, the dR/dO  experi-
enced by the entire magnet decreases and the cogging torque decreases. 

While the slots are shown skewed in Fig. 4-41, the phenomenon does not change if 
the magnets are skewed instead. In this case each magnet still sees a net reluctance 
that stays the same or nearly the same as a function of position. 



Figure 4-41. Skewed stator slots. 

4.13 Summary 

The fundamentals of brushless permanent magnet motors were discussed in this 
chapter. A magnetic circuit model for a motor was developed using simplifying 
assumptions that led to an expression for the air gap flux density. Based on an ideal 
flux density distribution, the flux linkage, back EMF, and torque produced by a coil 
on the stator were found. The influence of design variations evolved from this basic 
analysis. Since the stator windings place such a crucial role, coil properties of resis-
tance and inductance were computed. In addition, discussion included the influence 
of coil connections and slot constraints. The key parameters of torque constant, back 
EMF constant, motor constant and torque per unit rotor volume were introduced. 
Finally, the chapter concluded with a discussion of cogging torque and design guide-
lines for its minimization. 





This chapter illustrates the features of many different brushless permanent magnet 
motor structures. Because there are so many possibilities, they cannot all be rigor-
ously analyzed. Only the most common structures are analyzed in later chapters. For 
most structures, it is simply a matter of modifying the geometric parameters to apply 
developed expressions to alternative structures. 

5.1 Radial Flux Motors 

Inner Rotor 
In most motors, flux crosses from the rotor to the stator in the radial direction. Of 
these motors, the vast majority have an inner rotor and outer stator. The motors con-
sidered in Chapter 4 were radial flux motors with inner rotors. While the rotors con-
sidered up to this point had surface-mounted magnets, they are not the only possibil-
ity. Figure 5-1 shows a variety of the most common inner rotor types. 

Four of the rotors shown, Figs. 5-\a-d, depict variations of surface-mounted mag-
nets. The traditional radial arc magnet shape is shown in Fig. 5-1«. Figure 5-lb is 
similar, except the sides of the magnet are parallel, rather than radial. Yet another 
alternative is shown in Fig. 5-lc, where the sides are parallel and the bottom is flat. 
This magnet shape is often called breadloaf  or simply loaf because of its resemblance 
to a slice of bread baked in a loaf pan. The magnet shapes in Figs. 5-1 b and 5-lc 
appear primarily for manufacturing reasons. These shapes are easy to create by start-
ing with a rectangular block of magnet material. When magnet material is bonded 
rather than sintered, the rotor magnets are often formed from a solid ring of magnet 
material as shown in Fig. 5-Id. In this case the magnet poles are created by magnetiz-
ing the rotor after assembling it to the rotor yoke. The remaining two rotor cross sec-
tions in Fig. 5-1 show two common interior permanent magnet rotors. The rotor 
shown in Fig. 5-le is known as the spoke configuration. This configuration promotes 
flux concentration because the magnet surface area is greater than the rotor surface 
area. This rotor type is useful for gaining better performance from ferrite magnet 
material and has the benefit of using rectangular block magnets. The final rotor 



Figure 5-1. Inner rotor possibilities. 

shown in Fig. 5-1/, has buried magnets. This construction is beneficial for high speed 
operation, since the rectangular magnets are entirely enclosed in a solid rotor struc-
ture. While the interior permanent magnet rotors support the use of rectangular mag-
nets, the presence of ferromagnetic material at the rotor surface dramatically 
increases the air gap inductance. Furthermore, it adds a reluctance component to the 
torque produced. 

The surface-mounted magnet rotors shown in Fig. 5-1 appear in an overwhelming 
number of applications. The differences between the magnets shown in Figs. 5-la 
through 5-lc are significant when the number of magnet poles is small but diminish 
as the number of magnet poles increases. 



It is commonly assumed that the shape of a magnet determines the direction of its 
magnetization. That is, the magnetization is radial for the radial arc magnet shown in 
Fig. 5-1 a, and straight through, parallel to the edges of the magnets shown in Figs. 5-
1 b and 5-lc. These assumptions may be true in some cases, but magnetization direc-
tion is determined by the fixture used to magnetize the magnets. In any case, the 
magnetization direction has less impact on motor performance as the magnet pole 
count increases. 

Stators for inner rotor motors appear in two general forms. Basically, the stator can 
be slotted or slotless as shown in Figs. 5-2a and 5-2b respectively. The slotted stator 
has a small magnetic air gap making the permeance coefficient and resulting air gap 
flux density greater. In addition, the large contact area between the windings and the 
stator ferromagnetic material promotes good heat conduction away from the wind-



ings to the outer stator surface where it can easily be removed. Cogging torque and 
the cost of inserting windings through small slot openings are the disadvantages of 
the slotted stator. 

In the slotless stator as shown in Fig. 5-2b, windings are formed into a ring that fits 
inside the stator yoke and separated from the rotor by a small physical air gap. This 
construction exhibits no cogging torque since the reluctance seen by the rotor mag-
nets does not vary with position. More room exists for windings in the slotless motor, 
but the reduced thermal conductivity to the outer stator surface reduces the allow-
able current density in the windings. In the slotless case, the magnetic air gap encom-
passes the physical air gap as well as the radial thickness of the windings. This drives 
the permeance coefficient and air gap flux density down unless one dramatically 
increases the quality or quantity of magnet material. As a result, the performance of a 
motor using slotless stator construction is almost always significantly lower than that 
of an otherwise equivalent motor having a slotted stator. 

The stator shown in Fig. 5-2c has no slot openings. Rather, the stator teeth are con-
nected or bridged at the inner radius and end at the outer stator yoke. This construc-
tion makes it easier to wind the motor because the windings are inserted over the sta-
tor teeth from the outside rather than being inserted through small slot openings 
from the inside. After the windings are inserted, the stator is inserted into a 
tight-fitting stator yoke. To gain this manufacturing advantage, this construction suf-
fers magnetically. The bridged slot openings increase the slot leakage inductance 
greatly. In addition, they divert some flux away from the coils reducing the coil flux 
linkage and resulting back EMF. Moreover, a small air gap is introduced where the 
teeth meet the stator yoke. To minimize the impact of the bridged slot openings, the 
radial dimension of the bridge must be made as small as manufacturing will allow. 
Furthermore, the toothed assembly must fit tightly and concentrically within the 
outer stator yoke. 

Outer Rotor 
There are several reasons for the overwhelming prevalence of motors having inner 
rotors. These reasons include the ease of heat removal, because the windings are on 
the outside, and the containment of the rotating element. In some applications, these 
attributes are not as important as the benefits gained from having an outer rotor and 
inner stator, such as that shown in Fig. 5-3. Motors having this construction are some-
times called inside-out motors. Outer rotor motors appear most commonly as spindle 
motors for hard disk drives and as the drive motor for ventilation fans, such as those 
used to cool CPUs and computer cases. In these applications, the motor becomes an 
integrated part of a larger structure. 



Although individual magnets can be used in outer rotor motors, it is common to 
use a single bonded magnet ring inside a rotor cup as shown in the figure. Since the 
stator teeth point outward, this motor is relatively easy to wind. For a given outer 
radius, an outer rotor motor has a much larger air gap radius than that of an inner 
rotor motor. As a result, higher torque is achievable, provided the ohmic losses the 
stator windings can be dissipated. 

5.2 Axial Flux Motors 

Rotational motion can be obtained by swapping the orientation of the windings and 
magnetic field. In radial flux motors, the windings are oriented along the axial direc-
tion, and the flux flows in the radial direction. In axial flux motors, flux flows in the 
axial direction, and the windings are oriented along the radial direction as shown in 
Fig. 5-4. Because of their flat appearance, axial flux motors are informally called pan-
cake motors. Figure 5-4« shows a view of a rotor with magnets of alternating polarity. 
These magnets produce axial flux that interacts with windings in radial slots such as 
those shown in Fig. 5-4b. 

In many applications, one rotor is mated to one stator as shown in Fig. 5-4c. -This 
configuration is simple but unbalanced. In addition to torque, this configuration 
exhibits very high axial force because the rotor magnets attempt to close the air gap. 
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Figure 5-4. Axial flux motor configurations. 

By converting the rotor yoke into a second stator as shown in Fig. 5-4d, the rotor 
forces are balanced. This configuration sandwiches one rotor between two stators, 
and as a result, improves motor performance. 

Beyond special applications such as floppy disk spindle drives, the axial motor has 
not found widespread use. The primary reason is stator construction. Because flux 
flows axially, the stator must by laminated circuinferentially. That is, the stator is 
often constructed by winding a ferromagnetic ribbon concentrically This construc-
tion orients slots at ever increasing distances from one another. As a result, this sig-
nificantly increases stator manufacturing time and cost. This is much different than 
the laminations for the radial flux motor, where the slots are cut as part of the lami-
nation stamping process. The axial flux motor has found use as the spindle motor for 
removable media computer drives because of the space constraints. In these applica-
tions, the stator windings are mounted directly on a printed circuit board, eliminat-



ing the troublesome laminated stator. Motors constructed in this way are often called 
printed circuit board motors. 

5.3 Linear Motors 

There is no reason that a motor must produce torque. In many applications, the 
desired motion is linear, not rotational. While a transmission can be used to convert 
rotational motion to linear motion, in applications where backlash and inertia must 
be minimized, higher performance can be achieved if direct linear motion is created. 

The simplest linear motor matches a repeating sequence of alternating polarity 
magnets with a toothed section containing coils as shown in Fig. 5-5. This configura-
tion is capable of high force density but inherently exhibits very high attractive force. 

Depending on the application, either part of the motor may move. That is, in some 
applications the magnets may be the rotor, whereas in others the windings may be 
the rotor. In applications where the total travel distance is short, it is common to fix 
the magnets and let the coil structure move. These are moving coil designs. This 
requires cabling to get power to the moving windings, but minimizes the number of 
coils needed. As the total travel distance grows, magnet cost becomes prohibitive and 
the configuration flips. The magnets move and stationary coils line the travel path. In 
these moving magnet designs, it is common to energize only the coil section capable of 
producing force, since doing so with all coils reduces efficiency dramatically. 

In addition, to the simple structure shown in Fig. 5-5, linear motors are available in 
balanced force structures where a coil structure is sandwiched between two rows of 

Figure 5-5. A simple linear motor structure. 



magnets or a row of magnets is sandwiched between two coil structures. These struc-
tures are illustrated in Fig. 5-6. Some linear motors are also classified as ironless, in 
which case the winding structure contains no ferromagnetic material. For moving 
coil designs, this reduces the mass and maximizes acceleration capabilities. 

5.4 Summary 

Brushless permanent magnet motors can appear in many forms. Motors that produce 
rotational movement can have inner or outer rotors. Stators can be slotted or slotless. 
The shape and placement of magnets on the rotor can take numerous forms. When 
axial space is limited, axial flux or pancake motors sometimes become viable. When 
high performance linear motion is required, direct creation of linear motion with a 
linear motor structure often becomes the best choice. 

It is not possible in this text to rigorously consider all the design variations illus-
trated in this chapter. However, the analysis contained here applies to the design 
variations with appropriate geometrical modifications. Because of their dominance in 
the marketplace, the following chapters focus on radial flux motors with surface-
mounted magnets. 

Figure 5-6. Alternative linear motor structures. 



Brushless permanent magnet motors can have any even number of magnet poles Nm 

and any number of slots Ns. From this infinite set, only a small number of magnet 
pole and slot count combinations maximize use of the stator slots and lead to effi-
cient torque production. This chapter develops the concepts required to identify 
these valid pole and slot count combinations for three phase motors. In addition, this 
chapter presents a procedure for determining the winding layout for any valid pole 
and slot combination. 

6.1 Assumptions 

Since there are an infinite number of possibilities for pole and slot count combina-
tions and for winding layouts, assumptions are required to focus or limit the scope so 
that desirable windings can be found. The assumptions considered here are: 

a) The motor has three phases. (Modification of the material in this chapter for 
other phase counts follows in a straightforward fashion). 

b) All slots are filled. Therefore the number of slots is a multiple of the number 
of phases, i.e., Ns=kNpi,.  So for three phase motors, the number of slots is 
always a multiple of three. 

c) There are two coil sides in each slot. That is, the winding can be classified as 
a double layer winding. 

d) Only balanced windings are considered. In other words, only pole and slot 
count combinations that result in the back EMF of phases B and C being 
120°E offset from the back EMF of phase A are considered. 

e) The number of slots per pole per phase is assumed to be less than or equal 
to two, where Nspp=NJNm/Nph  is the number of slots per pole per phase. 
This restriction is primarily for convenience. Most motors fulfill this require-
ment. If Nspp is greater than two, another degree of freedom is introduced 
that can complicate the winding layout but seldom if ever increases motor 



performance. In practice, Nspp>2 often appears when a stator lamination is 
reused for a motor having fewer magnet poles. 

f) All coils have the same number of turns and all span the same number of 
slots. This implies that all coils are the same size and therefore have the 
same resistance and inductance. 

Abiding by the above list of assumptions routinely leads to motors that are capable 
of high performance. Moreover, these assumptions lead to motors that are readily 
wound. Motors can be wound that violate one or more of these assumptions. How-
ever, they may be more difficult to wind or may offer reduced performance. 

6.2 Coil Span 

As described in Chapter 4, coil span or coil pitch is the circumferential width of a 
coil. Coil span can be specified in terms of mechanical or electrical measures. In slot-
ted motors, it is convenient to describe the coil span in terms of slots. For example, if 
a coil goes from slot k to slot k+2, the coil span is 2 slots. 

Generally speaking, the coil span for a coil should be as close to 180 °E as possible 
but seldom exceed it. Doing so maximizes the flux linked to the coil and therefore 
maximizes the back EMF induced in the coil. The exception to this rule occurs when 
the slot pitch exceeds 180°E. This occurs when the number of slots Ns is less than the 
number of magnet poles N,„, a condition that appears most often in outer rotor 
motors. In this case, when the slot pitch exceeds 180°E, the coil pitch is set to the 
minimum of one. 

The nominal coil span as described above, can be found by defining the number of 
slots per magnet pole as 

This value gives the number of slots per 180°E. As a result, the nominal coil span in 
slots is the integer portion of (6.1), or 

S = max fix ±L 
N„, 

,1 (6.2) 



where the function max(v) returns the maximum of its two arguments and the func-
tion fix(-) returns the integer portion of its argument. The function max(v) is 
included in (6.2) to insure that the span is at least one slot when Ns<Nm. 

Occasionally, the winding span differs from the nominal span given in (6.2). When 
it does, the span chosen most often is equal to S*-l . Decreasing the span decreases 
the length of the end turns and changes the amplitude and harmonic content of the 
flux linkage and resulting back EMF. When this is done, the winding is said to be 
short pitched or chorded. 

6.3 Valid Pole and Slot Combinations 

Only certain combinations of magnet poles and stator slots fit the preceding winding 
assumptions. For example, for three phase motors the number of slots must be a mul-
tiple of three, or not all slots will be filled with two coil sides. Before considering the 
details of laying out a winding, it is beneficial to identify the subset of magnet pole 
and slot count combinations that lead to valid windings. 

For three phase motors, each of the three phase windings must produce a back 
EMF of the same amplitude and shape. More important here is that each back EMF 
be shifted in phase by 120°E from the other two phases. When these three criteria on 
the amplitude, shape, and relative phase are met, the winding is said to be balanced. 

The amplitude and shape of the phase back EMFs will be identical if the coils in 
each phase have the same number of turns and the same coil span and are distrib-
uted in the same way around the stator. Since these criteria are met by the winding 
assumptions, valid pole and slot counts are then determined by the ability to produce 
the 120°E relative phase offset among the three phase windings. 

With reference to Fig. 6-1, if the first coil of phase A uses slot 0 and slot S, where S is 
the chosen coil span, then the first coil of phase B must use a slot k and k+S, where k 
is chosen so that slots 0 and k are separated by 120°E. The slots may also be 120°E+ 
i]360°E apart where q is any integer. That is, the principle angle between slots 0 and k 
must be 120°E. If no such slot can be found, the chosen pole and slot count combina-
tion does not support a balanced winding. 

When a slot k is found, each coil in phase B is shifted by k slots with respect to the 
corresponding coil in phase A. This span of K0= k slots is called the phase offset.  For 
each coil in phase A, each corresponding coil in phase B is shifted K0 slots, thereby 
assuring that the individual coil back EMFs of phase B are shifted 120°E relative to 
those of phase A. 



Figure 6-1. A stator having fifteen slots. 

Since the phase offset of K0 slots leads to a 120°E offset between phases A and B, 
shifting the coils in phase C by K0 slots from those of phase B produces another 
120°E offset, thereby creating a balanced winding. 

Mathematically, the phase offset can be determined by identifying the angle of each 
slot relative to slot 0. Since the angular slot pitch is 0S=36O°M/NS, the angle of the kih 
slot is 

The principle angle associated with each of these angles can be determined by using 
the remainder function, rem(x,i/), which returns the remainder of the division x/y, 

If it exists, the phase offset K0 is the value of k for which (6.4) equals 120°E. It is possi-
ble that there are multiple solutions. In this case, any solution works equally well, so 
the smallest is usually chosen. 

For convenience, the arguments in (6.4) can be divided by 120°E, giving the phase 
offset K0 as the smallest value for which the following statement is true. 

esl(k)  = k N m 3 6 0 180°E for A: = 1,2 N - l 
s n ' 2 N« N 5 (6.3) 

(6.4) 



rem =1 
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\ 

(6.5) 

Because of the way the remainder function is defined, it is not possible to write a 
closed form solution for the phase offset. However, if a balanced winding exists, it is 
a simple iterative process to find it. 

An alternative to the above expression can be stated that avoids use of the rem 
function by equating (6.3) to 120°E+ i/360°E where q is any integer. Doing so and 
simplifying the result leads to the phase offset expression 

where K0 is a valid phase offset if evaluation of (6.6) for an integer value of q in the 
range 1 to (N,J2)-l  produces an integer result. 

As an example, consider the four pole, twelve slot case considered in Chapter 4. 
Iterating (6.5) shows that K0=2. Therefore if phase A starts in slot 0, phase B starts in 
slot 2 and phase C starts in slot 4. This agrees with the coil placement shown in Fig. 
4-12. For the four pole, fifteen slot case considered in Chapter 4, Ko=10. Thus, if phase 
A starts in slot 0, phase B starts in slot 10, and phase C starts in slot 20. In this case, 
slot 20 is the slot labeled rem(20,15)=5. 

6.4 Winding Layout 

Based on the lack of published works, the placement of windings in a motor having 
Nm magnet poles and Ns slots is either intuitively obvious or a trade secret. In most 
works, generic winding terms such as lap, wave, concentric, and sinusoidally distrib-
uted are introduced with little or no detail describing a procedure for finding valid 
windings. Confusing matters yet further is the introduction of terms such as distribu-
tion factor, pitch factor, and winding factor that describe the effect a winding layout 
has on the shape of the flux linkage and resulting back EMF. 

For the most part, it is not necessary to understand or use the conventional terms 
cited above. They were developed in the days when design was done by hand and 
originally applied to motors other than brushless permanent magnet motors. With 
the use of a computer, many of these terms become less important, are computed in 
different ways, or just don't apply to brushless permanent magnet motors. 

(6.6) 



The winding layout developed here leads to a double layer lap winding that 
appears in just about all brushless permanent magnet motors. The layout is both 
manufacturable and maximizes motor performance. While the winding layout devel-
oped here can be modified to produce a wave winding that may or may not be single 
layer, doing so does not generally improve performance. According to the BLv and 
BLi laws, the distribution of the coil end turns does not influence back EMF or 
torque; rather, it is the slot placement of coils that influences back EMF and torque. 
The end turns exist solely to transport current from one slot to the next. In other 
words, the BLv and BLi laws don't say anything about the end turns, so how the end 
turns are laid out does not play a role in back EMF or torque production. However, 
end turn layout does influence coil resistance, inductance, and manufacturability. 

The goal in laying out a winding is to place coils having a span of S in slot pairs 
such that relative angular coil midpoints are as close to 0°E and 180°E separation as 
possible. Coils close to 0°E are wound in one direction and coils close to 180°E are 
wound in the reverse or opposite direction since the magnet flux is in the opposite 
direction at 180 °E. For example, consider the integral slot pitch, four pole, twelve slot 
motor shown in Fig. 6-2. (Note that the slots in this figure are numbered starting with 
the number one. This is different but otherwise equivalent to numbering that starts 
with the number zero as shown in Fig. 6-1.) In this figure, coils having midpoints at 
6[ and 03 are at the same angle designated 0°E and are wound in one direction. On 
the other hand, coils having midpoints at ft and <94 are 180°E away from d\ and ft; 
respectively and are wound in the opposite direction. To signify the relative coil 
direction, the terms In and Out are used as shown in Fig. 6-2. In refers to the coil side 
entering a slot and Out refers to a coil side coming out of a slot. 

In fractional slot motors, it is not possible to align all coils at 0°E or 180°E separa-
tion. As a result, coil locations must be chosen that are as close as possible to 0°E and 
180°E separation. For those coils closest to 180°E, the reverse or opposite winding 
direction is used. This effectively shifts the coil angle by 180° E back toward 0°E. The 
required number of coils per phase are then chosen from this list such that the wind-
ing assumptions stated earlier are met. 

As stated in assumption (b), the number of slots is always a multiple of three for 
three phase motors. Since each coil fills two slots one half full, each coil effectively 
fills one slot. As a result, the number of coils per phase is 

c p " ~ N p h ~ 3 (6-7) 



Figure 6-2. An integral slot pitch, four pole, twelve slot motor. 

This is the number of coil locations that must be found for each phase. The coil loca-
tions for other phases are found by applying the phase offset K0 twice to the coil loca-
tions found for phase A. 

Example 
To illustrate how coil locations are found, consider the four pole, fifteen slot motor 
shown in Fig. 6-3. Based on the nominal coil span of three, if the coil going in slot 1 
and out slot 4 is at 0°E, then a coil wound in the same direction in slots 2 and 5 is at a 
relative angle equal to one slot pitch, or 9=6s=(Nm/N^)-180°E  or 48°E. Similarly, a coil 
wound in the same direction in slots 5 and 8, is at a relative angle of 0=40S=4-48°E or 
192°E. If this latter coil is wound in the opposite direction as that shown in the fig-
ure, i.e., the In slot becomes slot 8 and the Out slot becomes slot 5, then the relative 
angle of this coil becomes 192°E-180°E=12°E. 

In other words, the relative angle of all potential coils having an In slot of k is 

ec(k)  = (k-l)^180°E  ( 6 8 ) 
JVj 



Figure 6-3. A four pole, fifteen slot motor. 

For the four pole, fifteen slot motor in Fig. 6-3, these angles and associated In and 
Out slots are 

Coil 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Angle 0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 

In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Out 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 

These angles are correct but difficult to decipher because they extend outside the 
range -18O°<0<18O°. Mathematically this problem can be corrected by finding the 
principle angle within this range by applying the function 

9 = rem (6 + 180°, 360°) -180° (6.9) 

Doing so, the above coil angles become 



Coil 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Angle 0 48 96 144 -168 -120 -72 -24 24 72 120 168 -144 -96 -48 

In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Out 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 

For coil angles having a magnitude greater than 90°, the coil direction is reversed, 
thereby changing the coil angle by 180°. Performing this operation for the four pole, 
fifteen slot motor being considered modifies the above coil data to 

Coil 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Angle 0 48 -84 -36 12 60 -72 -24 24 72 -60 -12 36 84 -48 

In 1 2 6 7 8 9 7 8 9 10 14 15 1 2 15 

Out 4 5 3 4 5 6 10 11 12 13 11 12 13 14 3 

Given this table of all potential coils for phase A, choosing those closest to 0° and 
minimizing the total spread of angles will generally maximize motor performance. 
Since there are five coils per phase for this motor, coils numbered 1, 5, 8, 9, and 12 are 
closest to 0° and have a total spread of 24°-(-24°)=48°. Selecting these coils from the 
above data and sorting them by magnitude gives 

Coil 1 5 12 9 8 

Angle 0 12 -12 24 -24 

In 1 8 15 9 8 

Out 4 5 12 12 11 

To confirm that this choice of coils satisfies all the winding assumptions, these coils 
and their associated phase B and phase C counterparts are shown in the Table 6-1. 
I iere the windings are tabulated by slot number, and the coil offset of K0= 10 slots has 
been used to place the corresponding coils of phases B and C. Since each row in the 
table has two entries, each slot is full and contains two coil sides. Therefore, this is a 
valid winding. 

Visually, the phase A coils of this winding are depicted in Fig. 6-4. For this particu-
lar example, the coil placement does not exhibit any angular symmetry, primarily 



Table 6-1. Winding layout for a four pole, fifteen slot motor. 

Slot Phase A Phase B Phase C 

1 In Out 
2 Out & Out 
3 In & In 
4 Out Tn 

5 Out In 
6 Out In 
7 Out & Out 

8 In & In 

9 In Out 
10 In Out 
11 Out In 
12 Out & Out 

13 In & In 
14 Out In 

15 In Out 

because there are an odd number of coils. However, the coil directions make sense 
since the coils are wound in one direction over one rotor magnet polarity, i.e., coils 1, 
8 and 9, and in the opposite direction over the opposite rotor magnet polarity, i.e., 
coils 5 and 12.. 

Example 
As another example, consider the ten pole, twelve slot motor shown in Fig. 6-5, 

* 

which has a nominal coil span S =1 and a phase offset K0= 8. Using this nominal coil 

span, the angular slot pitch is 0s=(Nm/Ns)-18O°E or 150°E. The set of all possible coils 
for phase A and their principle angles are 

Coil 1 2 3 4 5 6 7 8 9 10 11 12 

Angle 0 150 -60 90 -120 30 -180 -30 120 -90 60 -150 

In 1 2 3 4 5 6 7 8 9 10 11 12 
Out 2 3 4 5 6 7 8 9 10 11 12 1 



Figure 6-4. Phase A winding layout for a four pole, fifteen slot motor. 



Changing the winding direction for all coils whose angles have a magnitude greater 
than 90°E and changing their corresponding angle by 180°E produce the following 
potential coils for phase A. 

Coil 1 2 3 4 5 6 7 8 9 10 11 12 

Angle 0 -30 -60 90 60 30 0 -30 -60 -90 60 30 

In 1 3 3 4 6 6 8 8 10 10 11 1 

Out 2 2 4 5 5 7 7 9 9 11 12 12 

There are four coils per phase for this motor. Therefore, four coils must be chosen 
from the above tabulation to form a valid winding. Clearly coils 1 and 7, which are at 
0° should be used. To minimize the angular spread of the winding, the two 30° or 
two -30° coils should be chosen. Since both of these choices produce the same angu-
lar spread, both layouts lead to the same motor performance. 

Using the two 0° coils and the two -30° coils, Table 6-2 provides the winding layout 
for all three phases. Once again, since each row in the table has two entries, each slot 
is full and contains two coil sides, and the winding is valid. 

Figure 6-6 illustrates the winding layout for the phase A winding. In this case, since 
there are an even number of coils, angular symmetry exists. The winding contains 
two groups of two coils each on opposite sides of the stator. Within each group, one 
coil has an angle of 0° and the other has an angle of -30°. 

Table 6-2. Winding layout for a ten pole, twelve slot motor. 

Slot Phase A Phase B Phase C 
1 In Out 

2 Out & Out 

3 In Out 

4 In & In 

5 Out In 

6 Out & Out 

7 Out In 

8 In&Tn 

9 Out In 

10 Out & Out 

11 In Out 
12 In & In 



The winding layout shown in Table 6-2 minimizes the angular spread in the coils 
making up the phase windings. While this is usually desired, other possibilities exist. 
For example, the ten pole, twelve slot motor can be wound by selecting the two 0° 
coils, one -30° coil, and one 30° coil. This produces a winding that has a coil spread 
of 60°. Yet other alternatives that have angular coil spreads of 60° include selecting 
the two 0° coils and the two -60° coils, and selecting the two 0° coils and the two 60° 
coils. Clearly many winding possibilities exist, with some combinations producing 
invalid windings where some slots are underfilled and others are overfilled. 

An example of an alternative valid winding is shown in Fig. 6-7. This winding is 
composed of coils 1, 2, 7, and 12. Since the angular spread of coils in this winding dif-
fers from that shown in Fig. 6-6, the flux linkage and back EMF of these two wind-
ings will differ. This alternative winding also lacks the symmetry shown in Fig. 6-6. 

Winding Layout Procedure 
Using the assumptions presented at the beginning of this chapter as well as the pre-
ceding examples, the procedure for determining valid winding layouts is as follows 

1. Find the phase offset K0 from (6.5) or (6.6). If no phase offset can be found, 
the motor cannot be wound with a balanced winding. 



2. Find the nominal coil span S* using (6.2). If necessary, increase or decrease 
this value as desired. Designate the value used as S. 

3. Determine the number of coils per phase N î, using (6.7). 

4. Place the first coil in phase A. This coil goes in slot 1 and comes out slot 1+S, 
where S is the chosen coil span. 

5. Find the angular offset in electrical degrees of all possible coils having a 
span S relative to the first one. Express this angular offset in terms of its 
principle angle in the range -180°E to 180°E. 

6. For each coil whose angular offset magnitude exceeds 90°E, reverse the coil 
direction and change the offset by 180°E to reflect the effect of the coil rever-
sal. 

7. From this list, choose a total of NCfll,  coils such that the angular spread 
among the coils is minimum. There may be one or more valid solutions as 
well as invalid solutions for the minimum angular coil spread case. Even 
more possibilities exist for non-minimum angular coil spread cases. 



8. Using the coil offset K0, determine the winding layout for phases B and C. 
The phase B winding is shifted K0 slots from the phase A winding, and the 
phase C winding is shifted K0 slots from the phase B winding. 

9. The winding is valid if all slots contain exactly two coil sides each. If the 
winding is not valid, other possibilities must be considered by returning to 
procedure step number 7. 

6.5 Coil Connections 

Once a winding layout has been determined, the individual coils making up each 
phase must be connected together in some way to form the phase winding. The sim-
plest and most common approach is to connect all coils in series. When this is done, 
the winding can start at any slot specified by the winding layout. Similarly the phase 
winding can stop anywhere as well, as long as all specified turns are wound in the 
specified direction in specified slots. 

As was illustrated in Chapter 4, individual coils can be connected in combinations 
of series and parallel to form phase windings. If the back EMFs of the coils connected 
in parallel are not identical in amplitude, shape, and angle, current circulates among 
the coils connected in parallel, thereby reducing motor performance. Given a specific 
winding layout, combinations of series and parallel that do not suffer from circulat-
ing currents can be identified. 

For example, consider the four pole, fifteen slot motor winding shown in Fig. 6-4. 
None of the coils in this winding share the same angle. Furthermore, since the num-
ber of coils per phase, i.e., Ncpi,=5, is a prime number, all coils must be placed in series 
or all coils must be placed in parallel. No other feasible combinations exist. Because 
the relative angles of the coils are all different in this example, connecting all wind-
ings in parallel would lead to circulating currents. That leaves connecting all coils in 
series as the only reasonable possibility for this pole and slot combination. 

The situation is much different for the ten pole, twelve slot motor winding shown 
in Fig. 6-6. Here two coil groups are readily visible. In addition, Nc^i=4 is not a prime 
number. The coils within each group are at relative coil angles of 0° and -30° respec-
tively. Therefore, if the coils within each group (i.e.,  one coil at 0° and one at -30°) 
are connected in series, and the two groups are connected in parallel, no circulating 
currents are created since the net back EMF is identical for each group. Adoption of 
this connection scheme forms two parallel paths through the winding. 



By adopting the alternate winding for the ten pole, twelve slot motor shown in Fig. 
6-7, no coil groups are formed. As a result, it is not possible to connect the coils in any 
way other than all coils in series. Any other connection creates circulating currents. 

Based on these examples, the ability to connect all coils in parallel is restricted to 
integral slot motors where all coils have the same relative angle, such as the four 
pole, twelve slot motor shown in Fig. 4-12. The ability to connect coils in combina-
tions of series and parallel is restricted by the primeness of Nc„h and by the number of 
unique coil offset angles. In cases where coil groupings can be identified, some com-
binations of series and parallel are possible. 

If one ignores the circulating currents produced when coils having different offset 
angles are connected in parallel, the prime factors of Ncph determine the valid series 
and parallel combinations. For example, in the four pole, fifteen slot motor, there are 
five coils per phase, which has one and five as its prime factors. This means that all 
coils can be connected in series (five) or all in parallel (one). In the four pole, twelve 
slot motor, there are four coils per phase. The prime factors of four are one, two, and 
four. Therefore, all coils can be connected in series (four), all coils can be connected in 
parallel (one), or two coils can be connected in series, and these two coil sets can be 
connected in parallel (two). 

6.6 Winding Factor 

In traditional motor design, pitch and distribution factors are defined that relate the 
back EMF of a series connection of coils to the individual coil back EMFs. The distri-
bution factor takes into account the distribution of coil offset angles, and the pitch 
factor takes into account the effect of coil pitch. Given the back EMF of one full pitch 
coil, application of the pitch and distribution factors leads to the net back EMF of the 
phase winding. The basis for these two factors was demonstrated in Chapter 4. 

In most applications of the pitch and distribution factors, the coil back EMF was 
assumed to be sinusoidal or the harmonics were ignored because sinusoidal currents 
were applied to the motor. In this situation, the pitch and distribution factors were 
relatively simple to compute. In addition, both factors were commonly combined and 
called the winding factor. 

Since motor design is seldom done by hand any more, it is not necessary to derive 
or use either of these two factors. When using a computer, motor designers can 
manipulate Fourier series to describe basic waveforms. It is not necessary to limit 
analysis to a fundamental sinusoid when Fourier series manipulation permits consid-
eration of an arbitrary number of harmonics. As a result, these conventional factors 



are no longer a necessary component in motor design. At the same time, the effects 
they describe still play a dominant role. 

Knowing the individual coil offset angles for a particular winding layout allows 
one to determine a distribution factor that is called the winding factor in this work, 
since a pitch factor is not derived. Let the Fourier series 

(6.10) 

describe the back EMF of the A r t h coil in a phase winding. In this equation, 0 is in elec-
trical measure, En are the Fourier series coefficients, j is the unit imaginary number, 
and OK is the relative angular offset of the fcth coil, where 0j=O° is assumed. This 
expression implies that all coil back EMFs differ only in phase offset; their ampli-
tudes and shapes are otherwise identical. This conforms with the presented winding 
assumptions. 

If all NCpi, coils are connected in series, the individual coil back EMFs (6.10) add to 
create the phase back EMF 

epi,(e)  = Jjek(6)  ( 6 1 1 ) 
J t = i 

Substitution of (6.10) into (6.11) and simplifying produces 

k=1 h= 

where the winding factor Kwn is defined as 

fV 
1 

« - - ¡ r - Z « - * N (''") 
<J'>i k-1 

When all coil offset angles 9k are zero, such as in an integral slot motor of which the 
four pole, twelve slot motor is an example, the winding factor (6.13) is equal to one 
for all harmonic indices n. In this case, the phase back EMF given by (6.12) is simply 
an amplitude-scaled replica of the individual coil back EMFs. 
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Figure 6-8. Winding factor for the four pole, fifteen slot motor in Fig. 6-4. 
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Figure 6-9. Winding factor for the ten pole, twelve slot motor in Fig. 6-6. 

When the coil offset angles 6k are not all zero, the winding factor (6.13) describes 
how the harmonics in the individual coil back EMFs combine to influence or deter-
mine the harmonics of the phase back EMF. Depending on the winding layout, some 
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Figure 6-10. Winding factor for the ten pole, twelve slot motor in Fig. 6-7. 

harmonics in the coil back EMF may disappear entirely from the phase back EMF. 
Figures 6-8 through 6-10 show the amplitudes of the winding factors versus the har-
monic index n for the three example winding layouts considered earlier in this chap-
ter. Ideally, back EMFs do not have any even harmonics due to half wave symmetry. 
As a result, the winding factor for even indices tt has no significance. 

In a comparison of Figs. 6-9 and 6-10, the alternative winding layout in Fig. 6-7 does 
not dramatically change the winding factors compared to the original winding 
shown in Fig. 6-6. In particular, the winding factor at the fundamental harmonic, i.e., 
n=1, is essentially equal in both cases. However, a closer comparison of the other har-
monics shows that the winding factors of the original winding shown in Fig. 6-6 are 
generally greater in amplitude. As a result, the alternative winding layout in Fig. 6-7 
may produce a more sinusoidal back EMF. 

6.7 Inductance Revisited 

Given the placement of coils to form phase windings as described in this chapter, the 
computation of air gap inductance and slot leakage inductance as presented in Chap-
ter 4 are no longer applicable. In Chapter 4, only full pitch windings in integral slot 
motors were considered. Computation of inductance in the more general case consid-
ered in this chapter requires more investigation. 



Single Tooth Coil Equivalence 
The simplest way to compute inductance, flux linkage, and back EMF for a general 
winding is to decompose it into a sequence of single tooth coils as illustrated in Fig. 
6-11. In the figure, the winding in the left motor cross section has the same air gap 
inductance, flux linkage, and back EMF as the series-connected three coils shown in 
the right motor cross section. This single tooth coil equivalence holds because the net 
ampere-turns NI  in the intermediate slots 2 and 3 is zero. One coil side has current 
flowing into the cross section, and the other coil side has current flowing out. These 
two components cancel each other out, leaving the current flowing into slot 1 and out 
of slot 4, just as happens in the winding on the left. 

Air Gap Inductance 
To compute air gap inductance, the technique developed in Chapter 4 for full pitch 
windings must be generalized. This is accomplished by applying the technique 
developed in Chapter 4 to equivalent single tooth coils. To illustrate the procedure, 
consider the four pole, twelve slot motor cross section shown in Fig. 6-12, where the 
actual phase A winding is shown on the left and the single tooth coil equivalent is 
shown on the right. The air gap inductance of the winding shown was given in (4.22) 
and is repeated below for convenience 

r _ 2np0LstRro 2 
$ I 

g + - J m -
VrCJ, 

The magnetic circuit describing the single tooth coil equivalent is shown in Fig. 6-
13. In the figure, Rgm is the sum of the air gap and magnet reluctances seen by each 
tooth and Sk for k=l,2,...,Ns is a sign and scale factor that carries the sign of the MMF 



Figure 6-12. Phase A winding for a four pole, twelve slot motor. 

source for each tooth as well as its relative number of turns. For example in Fig. 6-12, 
Si=l, whereas S ] 2 = - l . In a winding where m single tooth coils appear around a sin-
gle tooth, the sign and scale factor for the tooth becomes S=±m, where the flux direc-
tion determines the sign used. 

The MMF at the center node relative to the stator yoke is found by summing the 
flux leaving the center node and setting it equal to zero. Doing so gives 



Jt=l k=1 S"' 
(6.14) 

where Ns is the number of slots, which is equal to the number of teeth. Solving this 
equation for the rotor MMF Fr gives 

Fr = 
-MI 
N S Jt=l 

(6.15) 

The net flux linked by the winding is given by A=N0, where 0 is the sum of the tooth 
fluxes in (6.14), with the proper sign or direction given by the sign of Sk. That is 

A = N ^ s i g n ( S t ) 4 = N ^ s i g n ( S i ) 
Jr=l k=1 

Fr+SkNi 
R gm 

(6.16) 

where sign(-) returns the sign of its argument. Using the definition L=A/i, and substi-
tuting (6.15) into (6.16), the air gap inductance for all coils connected in series is 

A N 2 N, 

i R 
- È s i g n ( S , ) 

V" k=1 

N. 

N. S m=l 
(6.17) 

Using the expressions for the air gap and magnet reluctances (4.2) to express them on 
a per tooth basis gives 

Rgm = + R„ 8 I 
8 + 

L 

(6.18) 

where the flux concentration factor C^AJA^ has been used to simplify the expres-
sion. Substituting the air gap cross-sectional area Ag=LsiGsRro, where 0s=2n/Ns,  into 
(6.18) and substituting the result into (6.17) gives the air gap inductance equation 

LS=N 2 2 y i 0 L s t R r c I 1 

8 + MrĈ  

— £ s i g n ( S , ) 
S Jt=l 

s * - — y s „ 
k N ¿s * s m=l (6.19) 



For the four pole, twelve slot motor shown in Fig. 6-12 and described by the mag-
netic circuit in Fig. 6-13, the scale factors Sk are 

Tooth 1 2 3 4 5 6 7 8 9 10 11 12 

s k 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 

Substitution of this information into (6.19) gives an air gap inductance of 

, _ 2^ 0 L s > K r o 2 
~ / ™ 

g + (6.20) 

which agrees with (4.22) computed in Chapter 4 and presented earlier in this section. 

To illustrate a case where more than one coil appears around some teeth, consider 
the four pole, fifteen slot motor shown in Fig. 6-14. The scale factors Stt for this cross 
section are 

Tooth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

sk 1 1 1 0 -1 -1 -1 1 2 2 1 -1 -1 -1 0 



Given this data, the air gap inductance of the four pole, fifteen slot motor with all 
coils connected in series is 

In summary, computation of the air gap inductance (6.19) requires that the tooth 
scale factors be found. This task is easily accomplished after finding a valid winding. 
The relative simplicity of (6.19) is due to single tooth coil equivalence; without it, the 
computation of air gap inductance would be much more cumbersome. 

Slot Leakage Inductance 
Integral slot motors with full pitch windings, such as the four pole, twelve slot motor 
shown in Figs. 6-2 and 6-12 have two coil sides in all slots occupied by a phase wind-
ing. In this case, (4.25) describes the slot leakage inductance per slot. However, in 
fractional slot motors such as the four pole, fifteen slot motor shown in Figs. 6-4 and 
6-14, not all slots contain the windings of a single phase. For those slots that contain 
coil sides from two different phases, a mutual slot leakage inductance exists, and 
(4.25) no longer applies for the self inductance term. 

If one ignores the mutual inductance component, the slot leakage inductance for a 
single coil side filling one half of a slot differs depending on the coil side placement. 
Coil sides at the slot bottom have greater slot leakage inductance than those at the 
slot top. 

To illustrate this fact, consider the two coil placements shown in Fig. 6-15. For the 
coil side in the slot bottom as shown on the left in the figure, the slot leakage induc-
tance can be found using the technique presented in Chapter 4. In this case, the field 
intensity crossing the slot from one tooth to the next tooth reaches its maximum 
value at x=dj2 rather than at x=ds. From x=dj2 to x=ds the field intensity is constant 
and equal to F=Ni/iosb.  Therefore the inductance from x-dJ2  to x=ds is given simply 

by N P where P is the permeance of the region. Applying these concepts and recog-
nizing that the number of turns is now N rather than 2N gives a total slot leakage 
inductance per slot for coils in the slot bottom of 

•2 2nf.i0LstR,0 

2 MpdJ-s, | n A h t , M Lst t Updsh t 
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+ lo"tust 
(6.21) 
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Figure 6-15. Coil side placement possibilities. 

where the first term inside the brackets is the coil area inductance, the second term is 
the inductance of the area above the coil, and the third and fourth terms are the taper 
area and slot opening components as presented in (4.25). 

When the coil side appears at the slot top as shown on the right in Fig. 6-15, there is 
no coil-induced magnetic field crossing the slot below the winding. This condition 
occurs because the high permeability of the teeth and stator yoke funnel all the mag-
netic field around the slot bottom. There is no incentive for magnetic field to cross the 
air space in the slot below the winding. In this case, the equivalent second term in 
(6.21) doesn't exist, whereas the first term in (6.21) now applies to the coil area at the 
slot top. Therefore the slot leakage inductance per slot for a coil side in the slot top is 

6wsb (wso+wsb)/2  wso J <6-22) 

A comparison of (6.21) to (6.22) demonstrates that the slot leakage inductance of 
coil sides in the slot bottom is greater than the inductance of coil sides at the slot top. 
For this reason, it is beneficial to wind a motor so that all phase windings have an 
equal number of coil sides in the slot bottom and slot top. If phases are wound 
sequentially, the first phase will have more coil sides in the slot bottom and the last 
phase wound will have more coil sides at the slot top. Winding in this way creates a 
motor having slightly different inductances for each phase. In most cases, this differ-
ence is very small because the inclusion of the air gap and end turn inductances to 
the total phase inductance (4.31) minimizes the relatively small difference between 
(6.21) and (6.22). 



Given the inductance expressions provided here as well as those given in Chapter 
4, the phase inductance of any general winding is easily computed by careful appli-
cation of the expressions for the air gap, slot leakage, and end turn inductances. 

6.8 Summary 

This chapter considered fundamental concepts and criteria for winding a brushless 
permanent magnet motor. Concepts such as coil span, phase offset, and winding fac-
tor were presented. Criteria were presented to identify valid pole and slot counts that 
support a balanced winding. Based on examples, a procedure was presented for 
winding any general motor that can support a balanced winding. To compute the 
inductance of windings other than the full pitch windings considered in Chapter 4, 
the concept of single tooth coil equivalence was introduced and used to generalize 
expressions for air gap inductance. Finally, slot leakage inductance was generalized 
to consider coils that occupy only the slot bottom or slot top. 



The magnetic field distribution within a motor plays a fundamental role in motor 
performance. In particular, the magnetic field in the air gap and how it links to the 
stator coils determines the back EMF and torque. Secondarily, the magnetic field act-
ing within the ferromagnetic portions of the motor determines the amplitude of the 
air gap flux density. If too much flux is forced through the ferromagnetic portions, 
they saturate and diminish the flux flow across the air gap. 

While a magnetic field cannot be seen with the eyes, magnetic flux is a fluid that 
flows under the influence of pressure in the form of MMF. As such, the magnetic 
field distribution in a motor can be visualized as fluid flow that is governed by fluid 
dynamic principles. Within materials, including air, flux density and field intensity 
are vector quantities that are governed by partial differential equations. 

Because of the complexity inherent in describing vector quantities in a three dimen-
sional space, assumptions are commonly made to simplify the problem so that sim-
ple analytical results can be obtained. This was done in Chapter 4, where magnetic 
field distributions were considered uniform over cross-sectional areas and the direc-
tion of flux flow was assumed. These assumptions led to magnetic circuit analysis. 

Magnetic circuit analysis provides rough estimates of the magnetic field distribu-
tion within a motor. These estimates provide valuable insight into the fundamentals 
of motor operation and help identify critical parameters. Because of the inherent non-
uniformity of the magnetic field distribution in the air gap, magnetic circuit analysis 
fails to provide accurate predictions for the flux linkage and back EMF in a brushless 
permanent magnet motor. For this reason, the air gap flux density distribution must 
be determined more accurately 

This chapter covers motor design details that are associated with the magnetic field 
distribution in a motor. Accurate prediction of the flux density distribution within 
the air gap is the key issue. Given this distribution, the magnetic field distribution in 
the rest of the motor can be easily approximated with sufficient accuracy using mag-
netic circuit analysis. 



7.1 Air Gap Magnetic Field Distribution 

Accurate determination of the magnetic field distribution in the air gap requires solv-
ing the governing partial differential equations and applying the appropriate bound-
ary conditions. To obtain a solution, the geometry must be simplified as shown in 
Fig. 7-1, where both inner rotor and outer rotor motor cross sections are depicted. 

In the figure, the discrete rotor magnets are replaced by a concentric ring of magnet 
material. Since the magnetization of this ring can be arbitrary, this simplification pro-
duces little error. In this model, the air space between discrete magnets, such as that 
shown in Figs. 5-1« and 5-1 b, is modeled as unmagnetized magnet material having a 
relative permeability equal to the magnet recoil permeability. Since the recoil perme-
ability is very close to unity for modem magnets, very little error is introduced by 
this assumption. 

The stators in Fig. 7-1 have no slots. In a sense, the slots have been filled with stator 
ferromagnetic material. This simplification is required because the slots are fixed to 
the stator, while the rotor spins. If the slots remained, the magnetic field solution 
would be a function of the slot placement as well as the magnet properties and geo-
metric dimensions. While this simplification appears to introduce a great deal of 
error, the presence of slots will be taken into account by appropriately modifying the 
magnetic field distribution computed without slots. 

m 
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Figure 7-1. Inner and Outer Rotor Geometries. 



Though not apparent from the figure, it is assumed that the ferromagnetic material 
in the rotor yoke and stator is infinitely permeable. This assumption creates simple 
boundary conditions that promote the analytic solution of the governing partial dif-
ferential equations. The actual finite, but high, relative permeability of the ferromag-
netic material has little effect on the magnetic field distribution. The primary error 
introduced by this assumption is the implied zero MMF across the ferromagnetic 
portions of the motor. This makes the solution overestimate the amplitude of the 
magnetic field distribution in the air gap. As with the presence of slots, the effect of 
finite ferromagnetic material permeability will be taken into account by modifying 
the magnetic field distribution determined under the ideal conditions that permit 
analytic solution. 

A detailed derivation of flux density and field intensity expressions in the air gap 
and magnet regions appears in Appendix B. In both regions, the magnetic field is 
described in terms of Fourier series with respect to angular position 0 in electrical 
measure where the Fourier coefficients are functions of radius r measured from the 
motor radial centerpoint. The results presented there are repeated below. 

Air Gap Region Solution 
In the air gap region, the radial and tangential flux density are described by 

Bttr(r,0)  = jr Biiry° 
)J = -oo 

respectively, where Bnrn and Bndn are the Fourier series coefficients given by (B.28) 
through (B.35), and 0 \s angular position in electrical measure. 

Magnet Region Solution 
In the magnet region, the radial and tangential flux density are described by 

|!=-oo 

Bmd(r,e)=f^Bmene'"d  ( Z 2 ) 



where Bmrn and Bmgn are the Fourier coefficients given by (B.37) through (B.43), and 6 
is angular position in electrical measure. 

Symmetry 
In both the air gap and magnet regions, the magnetic field exhibits halfwave symme-
try for all common magnetization profiles. As a result, all even harmonics in (7.1) and 
(7.2) are zero. In addition, given the common magnetization profiles defined in 
Appendix B, the resulting radial flux density exhibits even symmetry, making all of 
its Fourier series coefficients real. Similarly, the resulting tangential flux density 
exhibits odd symmetry, making all of its Fourier series coefficients imaginary. 

7.2 Influence of Stator Slots 

The preceding descriptions for the magnetic field in the air gap and magnet regions 
apply to the slotless case where the stator surface at the air gap is infinitely perme-
able. The presence of slots changes or perturbs the magnetic field throughout the air 
gap and magnet regions, with the perturbation varying as a function of radius or dis-
tance from the slots. At the magnet and rotor yoke interface at Rr, the magnetic field 
experiences little perturbation, whereas the greatest perturbation occurs at the stator 
surface at Rs. 

In addition to the magnetic field perturbation being a function of distance from the 
slots, it is also a function of the saturation of the ferromagnetic materials used in the 
rotor and stator. In particular, the saturation of the shoe tips influences the amplitude 
and distribution of the perturbation. Since this effect is impossible to describe ana-
lytically, it must be ignored. However, it does point to the desirability of making the 
shoe radial depth sufficiently large to minimize shoe tip saturation. This fact calls for 
a compromise, since it is in conflict with maximizing the slot area available for wind-
ings. 

A number of techniques for describing the magnetic field perturbation due to stator 
slots appear in the literature. Some parameterize the perturbation throughout the air 
gap and magnet regions. Some accommodate shoe tip saturation by making the per-
turbation apply to an empirically-determined area wider than the slot opening. In 
brushless permanent magnet motor design, the radial magnetic field entering the sta-
tor determines the flux linkage and back EMF. As a result, the influence of stator slots 
need only be considered at the stator surface. 

The fundamental principle governing the influence of the stator slots is the fact that 
the magnetic field over the slots must travel further to reach the stator ferromagnetic 



material. In a sense, the air gap is longer over the slots. Because of this larger effective 
air gap, the flux density is reduced over the slot area. This is easily understood by 
considering (4.4), which states 

B„—K,C° » 
\+Kr — (7.3) 

Pc 

where 

P — 
- " g c 4 m 

is the permeance coefficient. Equation (7.3) describes the amplitude of the air gap 
flux density in an idealized motor structure as a function of the magnet material and 
geometrical parameters. As the air gap length g in (7.3) increases, the permeance 
coefficient PC decreases, making the air gap flux density B,, decrease. 

Equation (7.3) provides a simple heuristic way to approximate the influence of slots 
on the radial magnetic field entering the stator. Let (7.3) with (7.4) describe the ideal 
flux density in the absence of slots, and let 

BSs=-
1 + Kr 

MR 

Pc (0) 
(7.5) 

describe the flux density as the air gap length varies with position, where the per-
meance coefficient Pc(9)=lm/(g(9)Cvaries  with position. Then, the ratio of (7.5) to 
(7.3) describes a correction factor that can be applied to the ideal magnetic field dis-
tribution at the stator surface to accommodate for the influence of stator slots. In the 
literature, this correction factor is sometimes called a relative permeance. Therefore, the 
air gap flux density under the influence of stator slots is 

B^6)=Ksl(d)Bs(e)  (7.6) 

where B^(6)=Btn(Rs,6)  as given by (7.1) is fixed to the rotor coordinate system. As the 
rotor passes by stator slots, the relative permeance or slot correction factor Ksj(d) 
modifies the air gap flux density in the neighborhood of the stator slots. Using (7.3) 
and (7.5), the slot correction factor is 



V c J 

^ Br 
1 + fC — f

 Pr 
(7.7) 

where 0 is fixed to the stator coordinate system. This equation simplifies to 

(7.8) 

From this equation, it is clear that as the common right hand term in the numerator 
and denominator increases, the influence of stator slots decreases. Therefore, increas-
ing the permeance coefficient decreases the influence of the slots. The term g(9)/g  is 
the normalized air gap length, where g is the air gap length over the stator teeth and 
g(6)  describes the air gap variation as one moves from tooth to slot to tooth on the 
stator. Over the stator teeth, g(d)=g,  making g{0)/g=1  and the resulting Ksj=1. 
Whereas, over the stator slots, g(0)>  1, making g(0)/g>  1 and Ksj< 1, which decreases 
the air gap flux density over the slots. 

Substituting (7.4) into (7.8), setting Kr= 1 since it is an empirical and difficult-to-
determine factor, and setting C^-l because it doesn't apply in this situation, leads to 

To complete the description of this slot correction factor, the variation in the air gap 
length g(6)  must be specified in the slot area. The most rudimentary solution is to 
assume that g(6)  is infinitely large over the slots. This makes the air gap flux density 
over the slots equal to zero. A better solution is to use the circular arc, straight line 
flux flow approximation as described in Chapter 2 and depicted in Fig. 2-9. In this 
case, g(9)=g+{n/2)x  where x is the linear distance into the slot area from a tooth edge. 
Applying this approach and using the geometry shown in Fig. 7-2 results in the nor-
malized air gap length over the range -6s/2<6<ds/2  being 

(7.9) 



Figure 7-2. Geometry for the computation of the slot correction factor. 
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(7.10) 

where all angles are in mechanical measure. Since the magnetic field is specified in 
terms of electrical measure, (7.10) can be rewritten using the relationship between 
electrical and mechanical measure (2/Nm)6e=0m  as 

8(0) 
1 |0|<0,/2 

l + J L i ( 0 _ 0 ( / 2 ) 0,/2<0<0s/2 

(e + 0,/2) -0s/2<0<-0(/2 
(7.11) 

where all angles are in electrical measure. That is, 0, 0, and 0S in (7.11) are expressed 
in electrical measure, whereas they are expressed in mechanical measure in (7.10). 

Based on the use of (7.11) in (7.9), Fig. 7-3 illustrates one period of the slot correc-
tion factor Ksi(6)  for typical parameter values. For the plotted data, the air gap flux 
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Figure 7-3. Typical slot correction factor. 

density at the slot midpoint is reduced to about 65% of its nominal value by the slot 
correction factor. The depth of this notch is highly dependent on the width of the slot 
opening. In many typical cases, it is not as deep as that shown in Fig. 7-3. 

This slot correction modeling assumes that the magnetic field is unchanged over 
the entire surface of the tooth. In reality, the magnetic field begins to experience some 
degradation as one approaches the slot area. As a result, some slot correction deriva-
tions extend their correction over the shoe tip area by an empirically-determined 
amount that is a function of the slot opening. 

There is no consensus about the optimum way to determine the slot correction fac-
tor. Shoe tip saturation and the finite radial depth of the shoe make it difficult to pre-
dict the slot correction factor accurately using an analytic expression. Each approach 
has its strengths and weaknesses. In practice, the differences in tooth flux computed 
using different slot correction factors are not dramatically different because integra-
tion is a naturally smoothing process. 

Because all coils in a motor can be described in terms of a sequence of equivalent sin-
gle tooth coils as described in Chapter 6, the flux linked by each coil is the sum of 
that linked to the individual tooth coils. For example, consider the coil and its single 
tooth equivalent shown in Fig. 7-4. If <p\(6)  describes the flux in the first tooth as a 

7.3 Tooth Flux 



Figure 7-4. A coil and its single tooth equivalent. 

function of the rotor position 6>in electrical measure, then the flux in the second tooth 
is <fo.(6)=<h(&-9s)  where 9S is the angular tooth or slot offset in electrical measure. 
Similarly, =<fo(0-2ds) is the flux in the third tooth making up the coil. Then the 
flux linking the coil on the left in the figure is 0c(0) = <fr(0)+01(0-0s)+01(0-2&;). 

As described above, the tooth flux plays a crucial role in determining motor per-
formance. From basic principles, this flux is given by the integral of the flux density 
over one slot pitch and axial motor length as 

<p = Jfi-dX 

which, for the geometry shown in Fig. 7-5 becomes 

i-si/2 , 
A(«)  = J ¡'^ Ksl (6)Bx(9  +a)Rsdddz ( 7 1 2 ) 

where Lst is the axial motor length, B,{(6)  is given by (7.6), all angles are in mechani-
cal measure, and a is the angular offset between a tooth center and magnet center. 
Since the integrand is not a function of the axial dimension z, the outer integral 
becomes multiplication by Lst. Furthermore, since the tooth flux is periodic with a 
period equal to the electrical period, (7.12) can be rewritten as 

<t,t(a)  = ̂ \8^2Ksl(0)Bg(e  + a)de ( 7 . 1 3 ) 

where all angles are now in electrical measure. 



Figure 7-5. Geometry for computation of tooth flux. 

For simplicity, let Bs(8)  as given in (7.6) be written as the Fourier series in electrical 
measure as 

Substituting this expression into (7.13) and simplifying produces the Fourier series 
description for the tooth flux of 

where the expression inside the brackets is the Fourier series coefficients of the tooth 
flux. As it stands, computation of the Fourier series coefficients of the tooth flux 
requires computation of the given integral for every harmonic index n. 

Elimination of this integral is possible by determining the Fourier series description 
of the slot correction factor (7.10) or (7.11), which is easily accomplished using the 
FFT approach described in Appendix A. Since the slot correction factor Ksi(6)  is not 
periodic with respect to electrical measure, but rather with respect to the slot pitch, 
the integral in (7.15) must be rewritten in terms of an angular measure associated 
with the slot pitch. That is, a change of variable is required so that the limits on the 
integral are —n and TT respectively. 

There are Ns slots and teeth. Therefore, there are Ns slot pitch periods per mechani-
cal revolution and the relationship between slot measure and mechanical measure is 

W = I V " ' ° (7.14) 

(7.15) 



0 S ; -N s 0 m (7.16) 

where GsI is angle in slot measure. Combining this with the relationship between 
electrical measure and mechanical measure (2/Nm)8e=9m  gives the desired relation-
ship between electrical measure and slot measure as 

0s t = 
2N, 
N„, 

9., (7.17) 

Using this relationship to change variables in the integral in (7.15) and writing the 
slot correction factor as the Fourier series 

Ks,(0)= E V e (7.18) 

where 0is in slot measure, the integral in (7.15) simplifies to 

xN,. 
N, 

m + n—— \n 
2 N« (7.19) 

where sinc(x)=sin(x)/x. This expression allows (7.15) to be rewritten as 

juö (7.20) 

where 9= a is angular position in electrical measure and the Fourier series coeffi-
cients are 

rtn - "g„ 
o 2nLstR y 

sine m + n-2NC (7.21) 

These last two equations describe the tooth flux as a function of electrical measure. If 
these equations describe the tooth flux in the first tooth, then the tooth flux in the 
other teeth have the same shape but are delayed by the angular electrical distance 
between the teeth. For example, the tooth flux in the second tooth is 0,2(0)=0f(0-0s) 
where 9s=(Nm/Ns)7t  is the angular slot pitch in radE. Generalizing this relationship 
gives the tooth flux in the kth tooth 



h(0)  = <f>,{0-(k-m)  for  A = 1,2. N s (7.22) 

If one assumes that the tooth flux spreads out uniformly across the tooth body in the 
region past the shoe area, the tooth body flux density is given simply as 

where 

R - h» 
~ K I w (7'24) 

si st tb 

in which Ks/  is the lamination stacking factor, Lst is the axial motor length, and z% is 
the tooth body width as shown in Fig. 7-5. 

A typical tooth flux density distribution versus rotor position based on the above 
derivation is shown in Fig. 7-6. When the North pole of a magnet is centered over the 
tooth as it is at 0=0 and 6=2k, the flux density has maximum positive amplitude. 
Similarly, when the tooth is centered over a South pole at 6=n, the flux density has 
maximum negative amplitude. In between these extremes, the tooth flux density var-
ies in response to the net flux entering the tooth. For example, when the tooth is cen-
tered between a North and South pole, the tooth flux density is zero. The tooth flux 
and flux density inherit their zero average and halfwave symmetry properties from 
the air gap flux density distribution. 

7.4 Stator Yoke Flux 

Given the description of the flux in each tooth (7.22), the stator yoke fluxes can be 
determined. In this case, the tooth fluxes are known and are modeled as flux sources 
as shown in the partial magnetic circuit in Fig. 7-7. The stator yoke segments are con-
stant reluctances whose fluxes are labeled with subscripts denoting the two teeth 
connected to each yoke segment. The MMF at each tooth and yoke segment connec-
tion relative to the center node is labeled according to tooth number as Fjt, where k is 
the tooth number. 

Setting the sum of fluxes leaving each tooth and yoke segment connection to zero, 
gives the Ns equations in Ns unknowns 
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Figure 7-6. A typical tooth flux density distribution. 



While the number of equations equals the number of unknowns in (7.25), the set of 
equations is singular and thus has no solution. One of the equations must be 
dropped and replaced by another independent constraint equation. 

This equation is found by applying the MMF equivalent of Kirchhoff's voltage law. 
The MMF across the kth stator yoke segment is (Fk+l-Fk).  Setting the sum of the 
MMFs around the complete stator yoke to zero gives 

( F 2 - f 1 ) + ( F 3 - F 2 ) + ( F 4 - F 3 ) + - + ( F 1 - F N s ) = 0 (7.26) 

Dividing both sides of this equation by the stator yoke reluctance R shows that the 
sum of the yoke fluxes around the stator is zero, i.e., 

( F 2 - f i ) | ( f 3 - F 2 ) | ( f 4 - F 3 ) | , ( F i - * x ) _ 0 

R R R R (727) 
&21 + & 32 +&43 + + = 0 

Combining this equation with the first Ns~ 1 equations in (7.25) gives a consistent 
set of Ns equations in Ns unknowns. Because of the simplicity and symmetry in this 
set of equations, the analytic solution for any one of the yoke segment fluxes is easily 
found. For example, the flux in the yoke segment between tooth 2 and tooth 1 is 
given by the weighted average 

1 N ' 

&21 (0) = T r X ( w S - * M ( W ) ( 0 ) (7.28) 
S Jt=l 

where <¡>¡̂ +1) i s ^e flux flowing in the (/r+l)th tooth as described by (7.22). 

Because all the terms on the right hand side of (7.28) are described in terms of Fou-
rier series, the stator yoke flux also has a Fourier series description. From the proper-
ties of Fourier series, (7.28) applies to each harmonic in the Fourier series description 
of the terms on the right hand side of (7.28) to give the associated terms of the stator 
yoke Fourier series. That is, the stator yoke flux (7.28) has a Fourier series representa-
tion in electrical measure of 

| > s „ e ' " S (7-29) 



where the Fourier series coefficients are given by 

1 X 
-k)<t>t(M)„  (7.30) 

where (j>̂ k+i)n the »th Fourier series coefficient of the (Ar+1 )th tooth flux. 

In general, only the yoke flux in one stator segment is required. However, if 
desired, the other stator yoke segment fluxes can be found recursively by using the 
relationships in (7.25), i.e., 

(7.31) 

Alternatively, the stator yoke fluxes can be found by simply delaying the previous 
yoke section flux description by the slot pitch 9S in electrical measure. 

Under the reasonable assumption that the stator yoke flux spreads out uniformly 
across the yoke cross section, the yoke flux density is described by the Fourier series 

CO 
B s y(d)= X ^ (7.32) 

M=—00 

where 

M 
B~„ -S" ~ KstLslwsy (7-33) 

in which wsy is the stator yoke width as shown in Fig. 7-5. 

A typical stator yoke flux density distribution versus rotor position based on the 
above derivation is shown in Fig. 7-8. The graph in Fig. 7-8 corresponds to the four 
pole, fifteen slot motor example used to produce the tooth flux density shown in Fig. 
7-6. 

7.5 Influence of Skew 

When the rotor magnets or the stator slots are skewed, the tooth flux and associated 
stator yoke fluxes differ from that derived earlier. Rather than rederive the tooth flux 
for the skewed case, it is more straightforward to find a factor that corrects the previ-
ously derived expressions (7.20) through (7.22). 



Figure 7-8. A typical stator yoke flux density distribution. 

Because skew smoothes the variation in air gap reluctance and flux to reduce cog-
ging torque, it is important to recognize that skew smoothes only the tooth and stator 
yoke fluxes but not the tooth and stator yoke flux densities. The tooth flux density is 
given by (7.23) and (7.24) under zero skew conditions. Likewise, the stator yoke flux 
density is given by (7.32) and (7.33) under zero skew conditions. At each point along 
the axial dimension, the tooth and stator flux densities shift in phase by an amount 
equal to the relative skew at that point, but otherwise the flux densities maintain 
their amplitudes and shapes as given by the derived equations. Therefore, compensa-
tion for skew is applied to the tooth and stator yoke fluxes after the associated flux 
densities are computed. 

In (7.12), tooth flux was computed under the assumption that the motor was uni-
form along the axial direction. As a result, integration with respect to z from - L J 2 to 
LJ2  simply became multiplication by Lst. When the rotor magnets or stator slots are 
skewed, this is no longer true because the integrand in (7.12) becomes a function of z. 
In particular, Bg(0+a)  shifts in phase as skew varies along the axial dimension. 

Rather than work with (7.12) directly it is convenient to consider skew using a sim-
pler expression. That is, let the integral 

W2 
F(0)=  {  f(8)dz  = Lstf(0)  ( 7 3 4 ) 

"i-s,/2 



denote (7.12) where f(6)  is the entire integrand of the outer integral. Moreover, if f(9) 
is represented by a Fourier series in electrical measure, (7.34) becomes 

F(6)  = LstJjFne'"e (7.35) 

where F„ are the Fourier series coefficients of the integrand. 

When the motor is skewed, (7.34) becomes 

k,/2 
f  f(e,z)dz  ( 7 3 6 ) 

where /(0,O)=/(0) as given by (7.34). In the usual case where skew is linear along the 
axial dimension, f(6,z)  is described by applying a linear phase shift to the Fourier 
series in (7.35) that is proportional to the axial dimension, i.e., 

f(d,z)=JjF„e  y L" (7.37) 

in which a,; is the total skew in electrical measure. As written, the skew is -exJ2 at 
z=-Ls(/2, 0 at z=0, and aJ2  at z=Lsf/2. Substituting (7.37) into (7.36) and simplifying 
leads to 

F s , (0) = L s ( £ s i n c ^ \Fne jnO 
(7.38) 

Comparing this expression to (7.35), the influence of skew is given by the sinc(-) term 
in (7.38). That is, given the tooth flux Fourier series for the unskewed case (7.20) and 
(7.21), the tooth flux Fourier series coefficients for the skewed case <j>'tn are related to 
the coefficients in (7.21) by 

<lhu - (7.39) 

where S„ is the skew factor 



S„ = sine nac (7.40) 

It is more common to specify the skew amount in terms of slot pitches, rather than 
as the angle a s in electrical measure as given in (7.40). That is, a one slot skew is equal 
to one slot pitch in electrical measure, which is KN,JNS  radE. Using this relationship, 
if the skew is a -̂ slot pitches, (7.40) becomes 

S„ = sine 2 K (7.41) 

Because the stator yoke flux is linearly related to the tooth flux, the above skew fac-
tor also applies to the stator yoke flux Fourier series coefficients (7.30). 

Figure 7-9 depicts application of the skew factor to the four pole, fifteen slot motor 
used to create the flux density plots in Figs. 7-6 and 7-8. The figure illustrates 
normalized-amplitude tooth flux for zero skew and one slot skew cases, where the 
one slot pitch skew case has narrower peaks and more rounded transitions. 

Equations (7.40) and (7.41) have significant impact on motor performance. In par-
ticular, they lead to an expression for the optimum skew required to eliminate cog-
ging torque. This expression will be analyzed in much greater detail later. 

Figure 7-9. Example normalized amplitude tooth fluxes for skewed and unskewed cases. 



The ideal magnetic field distribution derived in Appendix B and summarized at the 
beginning of this chapter assumes that the ferromagnetic material in the motor is infi-
nitely permeable. That is, it assumes that the field intensity H and the resulting MMF 
in the ferromagnetic portions of the motor are zero. In reality, the ferromagnetic por-
tions have a finite permeability only one to three orders of magnitude greater than 
that of air. In addition, the permeability is a nonlinear function of the field strength. 
Because of the disparity between the assumed infinite permeability and the actual 
finite permeability, the magnetic field predicted in Appendix B over-predicts the 
amplitude of the magnetic field. 

To compensate for the influence of ferromagnetic material, a reluctance factor simi-
lar to that introduced in Chapter 4 is introduced. In this case, the reluctance factor 
modifies the amplitude but not the shape of the magnetic field. The approach fol-
lowed here equates the MMF across the air gap under the ideal conditions assumed 
in Appendix B to the sum of the MMF across the actual air gap and the MMF across 
the finite permeability ferromagnetic material. 

Implementing this approach requires two approximations. First, the MMF across 
the air gap is not constant over the surface of the magnet as shown in Fig. B-ll. 
Therefore, some specific air gap MMF must be used. Second, the magnetic field dis-
tribution in the stator is not static. That is, it is a function of rotor position as illus-
trated in Fig. 7-10. At the rotor position shown in the figure, the flux flowing in every 
third tooth does not travel out to the stator yoke but rather travels directly from one 
magnet to the next primarily through the shoe region of the tooth. As the rotor turns, 
each tooth experiences a varying magnetic field that causes the tooth reluctance to 
vary in response to the B-H curve of the tooth ferromagnetic material. Therefore, a 
particular rotor position must be chosen to find the reluctance factor. 

The concepts behind the motor magnetic circuit model developed in Chapter 4 can 
be used to determine the reluctance factor by considering a one half magnet pitch 
section as shown between the dashed lines in the example motor cross section in Fig. 
7-11. Here, a magnet pole is centered on a tooth on the right hand side of the figure. 
The flux flowing out of the magnet center crosses the air gap in a straight radial line. 
As a result, computation of the air gap MMF F„ along the magnet centerline is given 
simply as 

(7.42) 



Figure 7-11. An example motor cross section showing one half of a magnet pitch. 



where Bar(r,0)  is the air gap flux density (7.1) evaluated at 6=0. This value of Fg/  com-
puted using the ideal magnetic field distribution, forms the basis for determining the 
reluctance factor. 

A magnetic circuit model for the one half magnet pitch section shown in Fig. 7-11 is 
shown in Fig. 7-12. In the figure, Fgn is the actual air gap MMF, which is equal to the 
ideal Fg described in the preceding paragraph divided by the reluctance factor Kr. 
The other MMFs are associated with pertinent ferromagnetic parts of the stator and 
rotor. From left to right in the figure, these MMFs are the rotor MMF Fr, the actual air 
gap MMF Fga=Fg/Kr,  the stator shoe MMF Fsh, the stator tooth MMF Ft, the first stator 
yoke section MMF Fyl, and the second stator yoke section MMF Fl/2.  The number of 
stator yoke sections varies depending on the number of magnet poles and stator 
slots. For the four pole, twelve slot case shown, the first stator yoke section has a 
length equal to one slot pitch, and the second has a length equal to one half slot pitch. 

As proposed earlier, the reluctance factor Kr is the value such that 

Fg= Fg/Kr  + Fr + Fsh + Ft + Fyi + Fy2 (7.43) 

where Fg is the air gap MMF under ideal infinite permeability conditions. Since the 
ferromagnetic portions of the motor have a nonlinear B-H curve, (7.43) does not have 
an analytic solution; rather it must be found through iteration by varying Kr until 
(7.43) is true. While this is unfortunate, the fact that it is a one-dimensional nonlinear 
problem makes the problem much easier to solve numerically than a full magnetic 
circuit or finite element analysis problem. 

The solution of (7.43) requires a means for computing reasonable estimates of the 
MMFs in the magnetic circuit. For a given value of Kr, each MMF is found by scaling 
the flux through the corresponding portion by Kr, i.e., <j)/Kr,  finding the associated 

Figure 7-12. Magnetic circuit associated with the motor section in Fig. 7-11. 



flux density B by dividing the flux by the cross-sectional area of the portion, using 
the material's B-H curve to find the corresponding field intensity H, and finally multi-
plying this field intensity by the flux path length of the portion to produce the 
required MMF, i.e., F=Hl. 

The stator shoe and tooth fluxes are both given by 0f(O) in (7.20). The first stator 
yoke section flux is given by (7.29) and (7.30) evaluated at 9=0. The second stator 
yoke section is found by applying (7.31) to (7.29) or by simply evaluating (7.29) at 
9=-9se. The rotor flux can be approximated by the tooth flux (7.20) <pt(0)  as well. The 
cross-sectional areas and flux path lengths are easily approximated by mean geomet-
ric values. 

in the absence of an available numerical algorithm for the solution of (7.43), the 
solution can be found by employing the bisection algorithm, which can be described 
as follows. Two extreme estimates of the reluctance factor are chosen, e.g., Kr=1 and 
Kr=2. For each of these values, the difference between the two sides of (7.43) is found. 
Next, the mean or average of these Kr values is tested as well. The extreme estimate 
whose difference in (7.43) shares the same sign as the mean value is discarded and 
replaced by the mean value. Then a new mean value is computed, tested, and is used 
to replace one of the current extreme values. Through continued iteration of this 
algorithm, the range between the minimum and maximum Kr values is repeatedly 
bisected, eventually leading to an estimate of the reluctance factor. 

When (7.43) is satisfied, the air gap flux density, rotor flux, shoe flux, tooth flux, and 
stator yoke fluxes are all divided by the reluctance factor Kr. For example, the Fourier 
series coefficients describing the tooth flux (7.21) become 

A' _ 0/» 
K - — (7.44) 

Typically, the reluctance factor falls between 1.0 and 1.1, meaning that the ideal air 
gap flux density computed in Appendix B over estimates the actual air gap flux den-
sity between 0 and 10%. If the reluctance factor is greater than around 1.1, the ferro-
magnetic portions of the motor consume too much MMF relative to the air gap, lead-
ing to diminished motor performance. 

Of the MMFs in (7.43), the stator tooth MMF is often much greater than all the other 
MMFs. This implies that the stator tooth plays a dominant role in how much the air 
gap flux density decreases. As a result, reducing the reluctance factor often means 
increasing the stator tooth width so that the corresponding field intensity and MMF 
are decreased. 



The preceding analysis was conducted using a four pole, twelve slot motor as an 
example. The process remains unchanged for other pole and slot combinations, pro-
vided a one half magnet pitch section of the motor is considered in each case. Figure 
7-13 shows equivalent sections for the four pole, fifteen slot motor and the ten pole, 
twelve slot motor considered in Chapters 4 and 6. In the four pole, fifteen slot motor 
in the upper half of Fig. 7-13, just about two full stator yoke sections appear in the 
section required for the computation of the reluctance coefficient. On the other hand, 
in the ten pole, twelve slot motor shown in the lower half of the figure, a little over 
one half of a stator yoke section is required. The amount of stator yoke required for 
any magnet pole and slot count is given by one half of the number of slots per mag-
net pole, i.e., 

**m  _ Ns 

(7-45) 

Based on this relationship, the amount of stator yoke required for the four pole, 
twelve slot case is Nsm/2=1.5; for the four pole, fifteen slot case it is Nsm/2=15/8;  and 
for the ten pole, twelve slot case it is Nsm/2=12/20.  These values agree with the visual 
amounts shown in Figs. 7-11 and 7-13. 

7.7 Back EMF 

Given the tooth flux (7.20) and (7.21), as modified by the skew factor by (7.39) and 
(7.40), and as modified by the influence of ferromagnetic material in (7.44), the back 
EMF of a coil wrapped around a single tooth is found by applying Faraday's law 
(3.14) to the flux linkage (3.2). That is, the back EMF of a general coil having N turns 
is 

dX d6 dX dX dib 
e, = — = —— = w„— = Ncop— (7  AM 
' dt dt dO 1 d6 e dd ( / A b ) 

where 0 is the sum of the tooth fluxes linked by the coil and 6 and cot, are in electrical 
measure. 

Application of this expression to find the back EMF of a general coil enclosing one 
or more teeth follows directly when the coil is decomposed into its single tooth 
equivalent as was introduced in Chapter 6 and as illustrated in Fig. 7-14. If the tooth 
flux, as modified for skew and the influence of ferromagnetic material, is given by 
the Fourier series 





then the back EMF of a single tooth coil follows from the substitution of (7.47) into 
(7.46). Performing the substitution and simplifying the result gives a Fourier series 
representation of the back EMF of 

oo 
et(d)=JjEtne'"e  ( 7 4 g ) 

where the Fourier series coefficients are 

Etn=jnNa>^tn (7.49) 

The back EMF of a general coil is the superposition or sum of the back EMFs of its 
single tooth equivalent coils. For example, the back EMF of the coil shown in Fig. 7-
14 is given by 

(e)  = et(d)+et(6-es)  + et{6-2ds)  (7.50) 

where 9S is the angular slot pitch in electrical measure. Given the Fourier series 
description in (7.48) and (7.49), this expression also leads to a Fourier series relation-
ship for the coil back EMF that is easily found by applying the phase shift property 
(A.14) to the two shifted or delayed terms in (7.49). 

Once the back EMF of a single coil in a phase winding has been found using the 
above approach, the back EMF of other coils in the winding are found by considering 
the relative coil offset angles of each coil relative to the first. Under the assumption 
that all coils have the same number of turns, the back EMF of the other coils have the 
same amplitude and shape as the first coil but are shifted in phase by their respective 
coil offset angles. This process was illustrated in Chapter 6 in the discussion of the 



winding factor for the case when all coils are connected in series. By using Fourier 
series to describe the tooth and coil back EMFs, it is straightforward to describe the 
phase back EMF epi,(0)  in terms of Fourier series as well. 

If the back EMF of phase A eph(6) is derived as described above, then the back EMF 
of phase B is epi,(0-6ph)  and the back EMF of phase C is epi,(6-2dfli,)=  €^,(6+0^,),  where 
Qph=2nl?> radE. For a motor connected in the Y-connection as described in the next 
chapter, the line-to-line back EMF ea\,(6)  measured between the terminals of phases A 
and B is 

eM=eph(d)-eph(d-eph)  (7.51) 

The line-to-line back EMFs between the terminals of other phase combinations fol-
lows accordingly. Using the delay and addition properties of Fourier series as dis-
closed in Appendix A, the Fourier series description of the line-to-line back EMFs is 
easily related to that of the individual phase back EMFs. 

7.8 Slotless Motor Construction 

Although they do not appear often in applications, brushless permanent magnet 
motors can be constructed without stator teeth as illustrated in Fig. 5-2/?. This slotless 
construction cannot be analyzed using the single tooth equivalence that applies to 
slotted motors. This section addresses the slotless motor configuration by developing 
expressions for the flux linkage and back EMF. 

Concentrated Winding 
Slotless motors exhibit no cogging torque, and therefore there is no need to utilize 

fractional pitch coils or the equivalent of fractional slot construction. Furthermore, it 
is common to place coils side-by-side in the circumferential direction rather than 
forming two layers in the radial direction. As a result, slotless motors typically have 
full pitch coils and one coil per pole per phase, which is the equivalent of one slot per 
pole per phase. An example of this construction is shown in Fig. 7-15 where the four 
full-pitch coils of phase A associated with the four magnet poles are shown. The coils 
for phases B and C follow accordingly. 

For three phase motors as shown in the figure, there are three coils per magnet pole 
with each coil having two coil sides. Therefore, there are six coil sides per magnet 
pole pitch. As a result, the angular distance allocated per coil side is 



= |radE = LradM (7.52) 

The area defined by this angular distance and the radial depth of the coil region con-
tains the A/ turns of each coil side. 

The flux linking each coil cannot be described by X=N<p  because this expression 
assumes that all turns link the same flux. Based on Fig. 7-15, magnet flux flowing 
from the rotor to the stator through the regions between the coil sides links all N 
turns of the coil. However, flux passing through the regions occupied by the coil 
turns links only a fraction of the N turns of each coil. Assuming that the coil turns are 
uniformly distributed throughout the coil side regions, the number of turns linked 
can be described as a function of angular position in electrical measure as shown in 
Fig. 7-16. In the region occupied by the coil turns, the number of turns linked varies 
linearly, whereas all turns are linked in the region between the coil sides. Because the 
coil direction of each coil alternates as one moves around the stator, the number of 
turns linked changes sign with each coil as shown. Given Fig. 7-16, the number of 
turns linked can be written as a Fourier series in electrical measure as 



Figure 7-16. Number of coil turns linked versus position. 

(7.53) 

where 

2N . f f e V , , v Nk = — sin — sine (kacn)  (7.54) 

Assuming that the radial magnetic field passing through each coil turn does not 
vary significantly with radius, the above relationships provide a way to describe the 
flux linkage of a single full pitch coil as 

L,,/2  n/2 
A c ( a ) = J j n(0)Bar{Rc,0+a)Rcjj-dedz  ( 7 5 5 ) 

where Rc is the mean radius of the coil as shown in Fig. 7-15, Bar(Rc,d+a)  is given by 
(7.1), « i s the angular offset between a coil and magnet centers, and Qc=(2/Nm)Qm  has 
been used to write the inner integral in terms of electrical measure. 

If the radial depth of the coil region is very large, the radial magnetic field may vary 
significantly with radius. In this case, the coil can be partitioned into circumferential 
slices at different radii, with each slice utilizing some fraction of the total coil turns N. 
Then, applying (7.55) to each slice and summing the results gives the desired coil flux 
linkage. Even though this circumferential slice approach is technically better, the 
smoothing property of integration generally leads to results of sufficient accuracy 
when (7.55) is applied at the mean coil radius Rc only. 



Writing Bnr(Rc,d+a)  as the Fourier series 

Bar(Rc,e+a)=^Bgnei"^  ( 7 5 6 ) 

n=~oo 

and substituting (7.56) and (7.53) into (7.55) leads to a coil flux linkage Fourier series 

A c ( 0 ) = ] T V " e (7.57) 

where 

^ * HI 
(7.58) 

where the variable substitution 9=a has been applied since A, is a function of electri-
cal measure. 

Assuming that all Nm coils are connected in series, and each coil has the same flux 
linkage, the phase flux linkage is simply the sum of that for each coil, or 

A„,(0) = N m A c (0) (7.59) 

The phase back EMF produced by this phase flux linkage is given by 

= (7.60) 

which, after substitution of (7.57) and (7.59) can be written as the Fourier series 

É V " " (7.61) 

where 

En=jnNm(oeXn  (7.62) 

Use of (7.54), (7.56), and (7.58) into (7.62) and (7.61) gives the phase back EMF for a 
full pitch winding where the coils are concentrated. 



Figure 7-16. Number of coil turns linked versus position. 

n ( d ) = J j N k e i k g (7.53) 
k=-

where 

XI 2N . fkn  \ . , 
Nk = — sin — sinc(tocJr) (7.54) 

Assuming that the radial magnetic field passing through each coil turn does not 
vary significantly with radius, the above relationships provide a way to describe the 
flux linkage of a single full pitch coil as 

W2 */2 
Xc(oc)=  J } n(d)Bar(Rc,e+a)Rc—  dOdz ( 7 5 5 ) 

-Ls,/2 -n/2 

where R( is the mean radius of the coil as shown in Fig. 7-15, B,jr(Rc,d+a)  is given by 
(7.1), a is the angular offset between a coil and magnet centers, and 9e=(2/Nm)6m  has 
been used to write the inner integral in terms of electrical measure. 

If the radial depth of the coil region is very large, the radial magnetic field may vary 
significantly with radius. In this case, the coil can be partitioned into circumferential 
slices at different radii, with each slice utilizing some fraction of the total coil turns N. 
Then, applying (7.55) to each slice and summing the results gives the desired coil flux 
linkage. Even though this circumferential slice approach is technically better, the 
smoothing property of integration generally leads to results of sufficient accuracy 
when (7.55) is applied at the mean coil radius Rc only. 



Writing Bnr(Rc,6+a)  as the Fourier series 

B f l f ( i ? c , 0 + a ) = j r V M 6 + a ) (7.56) 
h=-oo 

and substituting (7.56) and (7.53) into (7.55) leads to a coil flux linkage Fourier series 

¿ C ( 0 ) = X (7.57) 

where 

2nRcLsl . (  mn 
K = — ^ V 2 . N«->" s i n c — I (7.58) 

' m 

where the variable substitution 6= a has been applied since Xc is a function of electri-
cal measure. 

Assuming that all Nm coils are connected in series, and each coil has the same flux 
linkage, the phase flux linkage is simply the sum of that for each coil, or 

Aph(B)  = Nmlc(e)  (7.59) 

The phase back EMF produced by this phase flux linkage is given by 

dXpjj 
*(*> = — ^ ( 7 ' 6 0 ) 

which, after substitution of (7.57) and (7.59) can be written as the Fourier series 

eph(e)=  I ; Ene'"e ( 7  6 1 ) 
»=-00 

where 

E„ = jnNmcoeXn  (7.62) 

Use of (7.54), (7.56), and (7.58) into (7.62) and (7.61) gives the phase back EMF for a 
full pitch winding where the coils are concentrated. 



Sinusoidally-Distributed Winding 
In many articles on the control of brushless permanent magnet motors, the assump-
tion is made that the windings are sinusoidally distributed. That is, instead of the con-
centrated distribution shown in Fig. 7-16, the windings are assumed to have a num-
ber of turns linked versus position of 

This distribution has just two harmonics, one at »=-1 and one at n=1 as shown in 
(7.63). Substitution of these harmonics into (7.58) leads to the result 

Thus, when the windings are sinusoidally distributed, the flux linkage contains 
only the fundamental harmonics, n=-1 and n=1. All other harmonics are eliminated 
or filtered out by the winding distribution. Application of this result to (7.61) and 
(7.62) gives a sinusoidal phase back EMF. The back EMF is a pure sinusoid at the fun-
damental electrical frequency. This fact is why the sinusoidally-distributed assump-
tion is made in many motor control articles. Many advanced motor control algo-
rithms are based on an assumption that the back EMF contains no harmonics above 
the fundamental. 

In practice, few motors are wound with a sinusoidal winding distribution since 
doing so complicates the motor winding process and increases motor cost. A sinusoi-
dal winding distribution forces turns from all three motor phases to occupy the com-
plete circumference of the stator winding area. This means that all three phase wind-
ings are intermingled around the stator rather than being concentrated and separated 
from each another. In slotted motors, a sinusoidal distribution can be approximated 
by placing different numbers of turns from each phase in slots at discrete angular slot 
positions. This violates the distributed turns linked relationship (7.63). As a result, 
(7.64) cannot be achieved in the slotted motor case, and the resulting motor does not 
have a pure sinusoidal back EMF. In the slotted case, it is much more common to use 
a concentrated winding as discussed in Chapter 6 but to use use a combination of 
fractional pitch magnets, a fractional slot motor, and fractional pitch windings to 
minimize the higher harmonic content of the flux linkage and back EMF. 

n(0) = Ncos(0) = — e~i°+ — e'0 (7.63) 

ii — ¿1 
(7.64) 

0 otherwise 



This chapter discloses techniques for solving the magnetic circuit for a general radial 
field motor, ultimately leading to expressions for the back EMF generated in the sta-
tor windings due to the rotation of the rotor magnets. The magnetic field in the air 
gap was described in terms of a Fourier series whose coefficients were derived as the 
solution of partial differential equations with simple boundary conditions. From this 
solution, the influence of stator slots, the influence of skew, and the influence of the 
finite permeability of ferromagnetic material were considered. In each case, tech-
niques were developed to compensate the ideal magnetic field distribution. Lastly, 
slotless motor construction was considered. 





Given the back EMF of each phase as computed in Chapter 7, the production of 
torque requires electrical control of the currents in each motor phase winding. In this 
chapter, torque production in a brushless permanent magnet motor is studied with-
out introducing detailed power electronic circuitry. While this circuitry is inherently 
required, its introduction can easily cloud the underlying fundamental requirements 
of the motor. For this reason, this chapter focuses on what the motor requires rather 
than on what the power electronics can produce. 

8.1 Fundamentals of Torque Production 

Torque production is best understood through the use of conservation of energy con-
cepts as demonstrated earlier in Chapter 3 and by (3.43). Each motor phase winding 
is composed of a resistive component, an inductive component, and a back EMF as 
shown in Fig. 8-1. Application of voltage v across the winding causes a current i to 
flow through the winding. This current flow creates ohmic losses or heat in the resis-
tor Rph and creates a magnetic field that stores energy in the inductance Lph. When 
the phase current flows through the back EMF source eph, the source absorbs instan-
taneous power equal to the product ephi. This power must go somewhere. It does not 
create heat like the phase resistance; it does not store energy in a magnetic field like 
the phase inductance. To satisfy conservation of energy, this power is converted to 
mechanical power, which is given by the product Tco  as given by (3.33), i.e., ephi=Tco, 
where (o is in radM/s. 

L, 

v 

Figure 8-1. Electrical circuit model for one phase winding. 



When a motor has more than one phase winding, conservation of energy must 
apply simultaneously for all phases. For three phase motors being considered here, 
this implies that 

Tw-eaia+ebib+ecic  (8.1) 

where ev and ix for x=a,b, c are the respective back EMFs and currents in the three 
motor phases A, B, and C. Recognizing that the amplitudes of back EMFs are linearly 
proportional to speed co, the back EMFs in (8.1) can be written as ex=kxco where kx is 
the speed-independent shape of the back EMF having units of V/radM/s, which is 
equal to N-m/A. Substituting this relationship into (8.1) gives 

T(e)=ka(0)iA6)+kb(e)ib(0)+kc(0)ic(0)  (8.2) 

where the position dependence of the torque, back EMF shapes, and currents has 
been shown explicitly. 

In three phase motors with balanced windings, the back EMFs and currents of the 
three phases have the same shape but are offset by 0f,j,=27r/3radE or 120°E from each 
other. Using this fact, (8.2) can be rewritten as 

T(0)  = ka (6)itt  [6)  + ka ( 0 - e p h ) i a {0-0p!,)  + ku (o+6ph)ia  (0 +0„,) (8.3) 

From this equation, it is clear that given the motor back EMF shape kn(d),  torque pro-
duction is determined solely by specifying the current shape in phase A, ia(0). 

In practice, the desired torque is almost always a constant proportional to the 
amplitude of the current. That is, the motor should produce torque that does not vary 
as a function of position 0but does vary linearly with current amplitude. By follow-
ing these desired characteristics, the motor becomes an easily-controlled source of 
torque that promotes optimum control of the load attached to the motor. The exis-
tence of position dependent variations in the mutual torque, i.e., torque ripple, causes 
the motor load to repeatedly accelerate when the torque increases and decelerate 
when the torque decreases. 

Given this description of the desired motor torque, the goal in choosing the phase A 
current shape ia(6)  is to produce constant torque. In practice, this task has been 
accomplished by considering two "standard" back EMF shapes — trapezoidal and 
sinusoidal. When the motor has a trapezoidal back EMF, the motor is often referred 
to as a brushless DC motor, whereas when the back EMF is sinusoidal, the motor is 



often referred to as a permanent magnet synchronous motor. There is nothing magi-
cal about these terms. The fundamentals of torque production are identical, although 
the mathematics used to describe the two motors may be dramatically different. His-
torically, the two motors originated from different areas. The term brushless DC 
motor comes from the fact that a brushless DC motor approximates the operation of 
a permanent magnet brush DC motor with power electronics taking the place of the 
brushes. The term permanent magnet synchronous motor describes an AC synchro-
nous motor whose field excitation is provided by permanent magnets. Because of 
this difference in origin, the two motors are often mistakenly assumed to be much 
different from one another. What is different is the mathematics customarily used to 
describe them. The brushless DC motor is described in terms such as a torque con-
stant and back EMF constant, whereas the permanent magnet synchronous motor is 
described in terms such as a rotating air gap MMF, synchronous reactance, and vec-
tor control using a coordinate system based on direct and quadrature axes. 

In the sections that follow, each of these motor types will be discussed as well as the 
general case where the back EMF is represented by a Fourier series. 

8.2 Brushless DC Motor Drive 
Ideal Torque Production 
As stated earlier, a brushless DC motor generally describes a motor having a trape-
zoidal back EMF. For this case, the phase currents are rectangular pulses, sometimes 
loosely identified as squarewave currents. While (8.3) can be used to describe torque 
production for this motor, it is easier to understand this configuration graphically as 
shown in Fig. 8-2, where the three phases have been labeled A, B, and C respectively. 

In the figure, the back EMF shapes, i.e., the back EMFs divided by speed, are trape-
zoids having 2/3 duty cycle. That is, for each 180°E the back EMF shape is constant 
over 120 °E. The current associated with each back EMF is composed of rectangular 
pulses having a 2/3 duty cycle, where the nonzero portions of the pulses are aligned 
with the flat areas of the respective back EMF shapes and the polarity of the current 
matches that of the back EMF. Following (8.2), the constant torque produced is 
shown at the bottom of the figure. Over each 60°E segment, positive current flows in 
one phase, negative current flows in another, and no current flows in the third phase. 
The letters below the constant torque line signify the two phases carrying current, 
with the overbar denoting negative current flow or flow out of a phase. Every 60°E, 
where the back EMF in a phase makes a transition, the current in one phase remains 
unchanged, while the current in another goes to zero, and the current in the third 



as 4= Q-

u « 
S3 

CU 

1) 
CT" 
Ö 
H BC AB AC BC AB AC BC 

Figure 8-2. Brushless DC motor drive waveforms. 

becomes nonzero. Over 360°E, there are six transitions or commutations before the 
sequence repeats. As a result, this motor drive is often called a six step drive. 

If the amplitude of the back EMF shapes, i.e., the back EMFs divided by speed co in 
radM, in Fig. 8-2 is Kp and the amplitude of the current is Ip, then the torque pro-
duced by the brushless DC motor drive configuration is 

T( 6) = 2KpJp  (8.4) 



That is, the torque is constant and proportional to the current amplitude. The factor 
of two in (8.4) appears because two phases produce a torque equal to Kf,I},  at all 
instants. 

The fundamental appeal of this brushless DC motor drive configuration is that 
position feedback need only identify the commutation points every 60°E. As a result, 
three simple Hall effect devices can be used to identify the commutation points. If the 
Hall effect devices are properly aligned with the back EMFs, processed Hall effect 
device signals can easily produce logic signals whose transitions occur at the desired 
commutation points. 

Motor Constant 
Given the torque produced in (8.4), the motor constant K,„ for the brushless DC 
motor configuration can be found by computing the / R losses incurred. The RMS 
value of the ideal rectangular pulse currents shown in Fig. 8-2 is given by 

(8.5) 

This current flows through all three phase resistances producing total l2R losses of 

P = 3lLRpl, (8.6) 

Substituting (8.4) and (8.6) into the motor constant expression (4.40) gives 

This expression shows that the motor constant is directly proportional to the ampli-
tude of the back EMF shape, or back EMF constant. Since this analysis applies to the 
ideal case that cannot be achieved in practice, (8.7) represents the maximum achiev-
able motor constant. Real brushless DC motor drive configurations will exhibit a 
somewhat lower motor constant. 

Torque Ripple 
The biggest disadvantage of the brushless DC motor drive configuration is the physi-
cal inability to generate the ideal rectangular pulse currents. As shown in the figure, 
the currents must make the required transitions instantaneously. In reality, the transi-
tions require finite time. As a result, torque ripple is created at each commutation 



point during the finite transition time of each phase current. This torque ripple is 
known as commutation torque ripple. 

In addition to significant commutation torque ripple, the brushless DC motor drive 
configuration produces torque ripple whenever the back EMF or current shapes devi-
ate from their ideal characteristics shown in Fig. 8-2. For example, if the back EMF or 
current shapes do not have a uniform amplitude from phase to phase or are not flat 
over the desired 120 °E intervals when torque is produced, torque ripple appears. 

Because torque ripple is difficult to eliminate in the brushless DC motor drive con-
figuration, it is seldom used in applications where minimum torque ripple is 
required. However, in velocity applications such as fans and pumps where motor 
speed and inertia are sufficiently high, torque ripple has little affect because of the 
inherent filtering provided by the inertia. 

8.3 AC Synchronous Motor Drive 

Ideal Torque Production 

As stated earlier, an AC synchronous motor exhibits a sinusoidal back EMF shape, 
where the back EMF shape is the back EMF divided by speed CO in radM. In this case, 
if the back EMF and current shapes of phase A are respectively written as 

ka(9)  = Kpcos(G) 

ia(9)  = Ipcos(9)  <8-8) 

then, (8.3) becomes 

T(9)  = Kplp [cos2 (6)  + cos2 (d  -0ph ) + cos2 (fl + 9ph )] = | K p I p  ( 8 .9) 

As with the ideal brushless DC motor drive, constant torque with no torque ripple is 
produced. Here, matching the sinusoidal back EMF shape with a sinusoidal current 
shape aligned or in phase with the back EMF leads to constant torque whose ampli-
tude is linearly proportional to the current amplitude Ip. 

Compared to the discontinuous rectangular pulse currents required for the brush-
less DC motor drive configuration, the sinusoidal currents in the AC synchronous 
motor drive configuration are continuous and infinitely differentiable. As a result, it 
is generally easier to produce sinusoidal currents and therefore easier to minimize 



torque ripple in this case. On the other hand, production of sinusoidal currents 
requires more position information than that provided by three Hall effect sensors. In 
the AC synchronous motor case, position information is required throughout the 
electrical period, not just at the six commutation points needed in the brushless DC 
motor drive case. Traditionally, this position information has been provided by a 
resolver or position encoder. The expense and complexity incurred by using a 
resolver or encoder is easily justified in position control applications where the posi-
tion sensor provides feedback for control purposes as well. In velocity control appli-
cations, the need for these physical sensors can often be eliminated by employing 
digital signal processing algorithms to produce estimated position information of 
sufficient accuracy. 

Motor Constant 
Given the ideal torque (8.9) and the RMS value of the phase current l m s = l H l , the 
motor constant Km of an ideal AC synchronous motor drive is 

Thus, for the same amplitude back EMF shape, the motor constant for the AC syn-
chronous motor drive is about 87% that of the ideal brushless DC motor drive as 
given by (8.7). While this may be disappointing given all the beneficial characteristics 
of the AC synchronous motor drive, this drop in motor constant appears because the 
brushless DC motor drive utilizes more harmonic content in both the back EMF and 
currents to produce torque. 

Torque Ripple 
Since analytic expressions exist for the back EMF shape and current for the AC syn-
chronous motor drive, it is possible to consider sources of torque ripple analytically. 
There are a number of possible imperfections in the back EMF or current that lead to 
torque ripple. 

First, consider the situation where one back EMF amplitude or one current ampli-
tude does not match the other phases. That is, let the amplitude of the back EMF or 
current in phase A be a factor of (1+A) greater than ideal. In this case, (8.9) becomes 

(8.10) 

T(0)  = KpIp[(  1 + A)cos2 (0 ) + cos2 ( 0 - 9 p h ) + cos2 (d  + 0,,,)] 

= ^ V p + f V p c o s ( 2 0 ) 
3 +A (8.11) 



Thus, the constant torque produced has increased to (3+A)KpIp/2  and a torque ripple 
term at the second harmonic of the fundamental electrical frequency appears with an 
amplitude of AKpIp/2.  The ratio of the amplitude of the torque ripple to the constant 
torque produced is 

A A 

Using this expression, a 3% amplitude error in one phase produces a peak torque 
ripple of approximately 1 %. 

A second source of torque ripple occurs when the phase offset of a back EMF or 
current shape deviates from the ideal 0/,;,=2;r/3radE or 120°E offset among phases. 
For example, let the current in phase A be ¡¡,(6)  = lpcos(d+S),  where 5 is the angular 
mismatch. With this modification, (8.9) becomes 

T (0) = KpIp  [cos(0)cos(0 + 5) + cos2 (0 - 9 p h ) + cos2 (0 + Qph)] (8.13) 

which for small ¿becomes 

T ( 0 ) - | i C p i p + | K p / p s i n ( 2 0 ) (8.14) 

Therefore, a misaligned back EMF or current also produces a second harmonic 
torque ripple component. In this case, the relative size of the torque ripple is 5/3 or 
one third, meaning that a 0.03rad (=1.72°) phase misalignment produces 1% peak 
torque ripple. 

A third possible source of torque ripple occurs when either the back EMF or current 
shape contains harmonic terms in addition to the ideal fundamental terms in (8.8). To 
explore this possibility, let the back EMF shape of all phases contain a single higher 
harmonic having the form 

k„(  9) = Kp cos( 0)+K„cos(n  9) 

where n is an odd integer greater than 1. (Only odd integers need be considered, 
since they are the only terms that exist when the back EMF shape has halfwave sym-
metry.) In this situation, (8.9) can be written as 



T(0) = |K,,/p+ix„/ f , { l + 2cos[ ( ; ! - l )0 f l / , ] }cos[ (n- l )0] 

+ lK, ,/ f , { l+2cos[(»+l)0p„]}cos[(» + l ) e ] ( 8 " 1 5 ) 

As shown in this equation, the addition of a single harmonic to the back EMF or cur-
rent shape of all phases introduces two torque harmonics, one at the (n-l)th har-
monic and another at the (n+l)th harmonic. The amplitudes of these torque harmon-
ics are determined by the value of the two terms {l+2cos[(;i±l)0p/,]}. For 8ph=2k/ 
3radE, (l+2cos[(«-l)0p;,]| is nonzero and equal to 3 for n equal to odd integers 6(7+1, 
for any positive integer q. Similarly, (l+2cos[(n + l)0p/,]| is nonzero and equal to 3 for n 
equal to odd integers 6q-l, for any positive integer q. This implies that if n is any odd 
integer other than a multiple of three, torque ripple is produced, and the amplitude 
of the torque ripple is equal to 3K„lp/2. 

A final potential source of torque ripple to consider is phase misalignment between 
all back EMF and current shapes. In this case, let all currents be shifted in phase by S 
from their ideal angles, e.g., i„(9)=lpcos(9-S).  With these modifications, (8.9) becomes 

T(0) = |K p I p cos(5) (8.16) 

In this case, no torque ripple is produced, but the torque amplitude is scaled by 
cos(<5). Although no torque ripple appears, the torque production becomes less effi-
cient, since the current amplitude and resulting I R losses remains unchanged. 

This phase misalignment between all back EMF and current shapes provides one 
way to illustrate vector control or field-oriented control concepts, which are com-
monly used in motor control algorithms implemented using digital signal processors. 
Vector control expresses motor quantities in terms of quadrature and direct compo-
nents. If the motor currents are misaligned by an angle 8 as considered in the pre-
ceding passage, the currents can be written as 

ia {9)  = Ip cos (9 - 5) = Iq cos (0) +1d sin (9) 

ib (9) = Ip c o s ( 9 - 9 p h - S )  = J, cos(0-9p„)+/,, sin(0 -9ph) 

ic (9) = Ip cos(d+9ph  - 5 ) = Iq cos(9  +9ph) + Id s in (9+9p h ) 

where 



Iq = I p cos (5) (8.18) 

is the quadrature component of the current and 

Id=Ip  sin(S) (8.19) 

is the direct component of the current. Based on this description (8.16) becomes 

The quadrature and direct components are constants that describe the amplitude of 
variables in terms of a quadrature component that is in phase with the back EMF and 
a direct component that is 90°E out of phase with the back EMF. (Since the term 
quadrature means "to be perpendicular to" these definitions appear to be backwards. 
They are defined as above, because quadrature and direct are in reference to the flux 
linkage, e.g., if the flux linkage is Asin(0), then the back EMF is ©Acos(0), and the 
direct term Id is in phase with the flux linkage, and the quadrature term is 90° out of 
phase with the flux linkage.) 

In vector control, the instantaneous motor phase currents are processed by multipli-
cation by a dq transformation matrix to produce L and ld. The difference between 
these values and their respective desired values creates error signals that are used in 
control loops to drive the actual currents to the desired values. 

Since the direct component Id does not appear in the torque equation (8.20) but does 
contribute to ohmic losses, it is usually driven to zero by vector control algorithms. 
However, at high speeds where the back EMF amplitudes become larger than the 
voltage used to drive the motor, it becomes increasingly difficult to generate motor 
currents that lead to usable torque. This occurs because the rate of change in phase 
current as described by the phase winding model shown in Fig. 8-1 is given by 

As the peaks in the back EMF eph reach or exceed the applied voltage v, it becomes 
difficult or impossible to increase the phase current, i.e., to make di/dt>0.  In this situa-
tion, motor currents must be increased before the respective peaks of the back EMFs 
appear. That is, the motor currents must be advanced in phase relative to their back 

n0)=4v< 2 P i (8.20) 

di _ v-tpi, -Rpiji 
dt ~ Lp„ (8.21) 



EMFs. In vector control, this means making <5 negative, which creates a negative 
direct component to the current, i.e., ¡¡¡<0. This is commonly referred to as field or 
flux weakening control above base speed. 

8.4 General Drive 

Ideal Torque Production 
In addition to the two common drive configurations just discussed, insight can be 
gained by considering the general drive case where the back EMF and current shapes 
have arbitrary shapes. For this situation, let the back EMF and current shape for 
phase A be written as the Fourier series 

oo 

kl,(6)=JjKne'"e 

n=-oo 

hj=-m 

Substitution of these expressions into (8.3) and simplifying gives a Fourier series 
description of the motor torque as 

T(0)=  X r n [ l + 2cos(2™/3)y n 0 ( 8 2 3 ) 

where r„ is the nth Fourier series coefficient of the torque produced by phase A 

xn = X ^mhi-m (8.24) 

Despite the apparent complexity of (8.23) and equation (8.24), the use of the exponen-
tial form of the Fourier series makes the above expressions much simpler than 
equivalent expressions using either of the trigonometric forms of the Fourier series. 

Equation (8.24) shows that the torque Fourier series coefficients are related to those 
of the back EMF and current by a convolution summation. Thus, each phase current 
harmonic contributes to all torque harmonics. The cross product of individual cur-
rent and back EMF harmonics contributes to torque harmonics at frequencies equal 
to the sum and difference of the individual current and back EMF harmonics. This 
was demonstrated earlier in (8.14). 



Evaluation of the term in brackets in (8.23) and (8.24) for various 11 gives the har-
monic content of the motor torque. For example, the constant or average torque is 
given by the n=0 component 

T0 = T„ [ l + 2cos(0)] = 3 £ KmI_m  ( 8 2 5 ) 
hl=-oo 

This equation illustrates that the average torque produced by the motor is the sum of 
all products of opposite harmonics in the phase current and back EMF. Therefore, if 
the back EMF does not have a qth harmonic, the existence of a qth current harmonic 
does not add to the usable average torque but does add to the ohmic losses, since the 
mean square value of the phase current is 

£ » = ( ' ( 0 ) 2 ) = X l ' « | 2 (8.26) 

Clearly, to maximize the motor constant, current harmonics should be zero whenever 
the corresponding back EMF harmonic is zero. Moreover, to maximize torque pro-
duction efficiency, current harmonics should be large when the corresponding back 
EMF harmonic is large. In addition, (8.25) shows that increasing the harmonic con-
tent of both the back EMF and current offers the possibility of maximizing torque 
production. The 

more nonzero terms that exist in (8.25), the greater the average 
torque produced. This explains why the torque produced by the brushless DC motor 
drive is greater than that produced by the AC synchronous motor drive for the same 
amplitude back EMF and current. The AC synchronous motor drive utilizes only the 
fundamental component of the back EMF and current, whereas the back EMF and 
current in a brushless DC motor drive have substantial harmonic content beyond the 
fundamental. 

Further simplification of (8.23) and (8.24) is possible. The term in brackets in (8.23), 
is nonzero and equal to 3 only when n is a multiple of three. All 

other terms are zero. As a result, the motor torque only has harmonics at indices that 
are multiples of three. These harmonics are often called triple-« or triplen harmonics. 
Furthermore, since the back EMF and current exhibit half wave symmetry, all of the 
even harmonics of both the back EMF shape and current are zero. When this is true, 
the convolution summation in (8.24) is zero for all odd indices n. Combining this 
with the previous result, the motor torque contains only harmonics that are multiples 
of six. That is, (8.23) can be rewritten as 



(8.27) 

where 

7*6» ~ 3 X Km lè n_n (8.28) 

Torque Ripple 
The existence of torque ripple due to harmonic mismatch between the back EMF 
shape and the current is described by (8.27) and (8.28). For example, the torque har-
monic amplitudes at six times the electrical frequency are given by the T_f, and T6 

Fourier series coefficients 

T-6 -••• + K_sI_j  + K_3L3 + K_J_5  + Kxl_7  + K3I_g  + K5I_n  +••• 

T6 = • • • + K_5/i I + K-3'9 + K-i /7 + + K373 +K5I_l+-  ( 8 ' 2 9 ) 

If these sums are nonzero, torque ripple exists at the sixth harmonic. On the other 
hand, if the current harmonics are chosen properly, these sums can be set to zero, 
thereby eliminating torque ripple at the sixth harmonic. It can be shown that any 
number of torque harmonics can be simultaneously eliminated by proper selection of 
current harmonics. In fact, the selection of current harmonics is not unique. There are 
an infinite number of zero torque ripple solutions. Of these, the optimum choice is 
the set of current harmonics that simultaneously minimizes the RMS value of the cur-
rent as given by the square root of (8.26). This choice maximizes torque production 
efficiency by maximizing the motor constant. Detailed analytic treatment of this zero 
torque ripple solution can be found in journal articles listed in the Bibliography. 

Motor Constant 
In this general drive case, the motor constant cannot be expressed in a simple form 
where the current cancels between the numerator and denominator. Using (8.25) and 
(8.26) the motor constant can be written as 

00 

3 



8.5 Motor Drive Topologies 
The preceding sections of this chapter describe torque production in a brushless per-
manent magnet motor independent of the way the motor phase windings are driven 
by power electronics. That is, torque production was described from the motor's 
internal point of view rather than from an external point of view. Before concluding, 
it is instructive to consider torque production from a power electronics point of view. 

Half Bridge 
The half bridge drive topology shown in Fig. 8-3 is the simplest power electronics 
drive topology. In the figure, the switches represent transistors that can be opened or 
closed electronically. When a transistor switch is turned ON, current flows from the 
supply voltage Vcc down through the respective phase and back to the supply. This 
topology supports only positive current flow. As a result, only the positive half cycle 
of the back EMF can be used to produce torque as shown in Fig. 8-4. The simplicity of 
this configuration is matched by relatively poor performance. One half of the torque 
capability is lost by not applying negative current over the negative half cycle of the 
phase back EMFs. 

This topology typically appears only in low power applications where transistor 
count and cost must be minimized, and where the poor torque production efficiency 
has minimal impact on the application. 

Full H-Bridge 
The full H-bridge drive topology shown in Fig. 8-5 is the opposite end of the spec-
trum from the half bridge topology. Here each motor phase is controlled by four tran-
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Figure 8-4. Waveforms for the half bridge drive topology. 

sisfor switches connected in what is called an H-bridge. When one upper transistor is 
turned ON (e.g., Sj) and the lower transistor on the other end of the motor phase 
winding is turned ON (e.g.,  S4), current flows in one direction through the winding. 
When the opposite transistor pair (e.g., S2 and S 4 ) are turned ON, current flows in the 
opposite direction. Therefore this topology supports bipolar current flow and there-
fore supports the brushless DC motor and AC synchronous motor drive configura-
tions discussed previously in this chapter. 

While this full bridge topology allows independent control of each phase current, 
the use of twelve transistor switches makes this drive cost prohibitive for most appli-
cations. 



/-Connection 
The Y-connection drive topology shown in Fig. 8-6 is the most commonly imple-
mented motor drive. It requires twice as many transistor switches as the half bridge 
drive but only one half as many as the full bridge drive topology Current flow in this 
topology is created by turning ON one or more upper transistor switches and one or 
more lower transistor switches. 

In this topology, because the center node is not connected outside the motor, cur-
rent flowing into one phase must flow out of the other phases. That is, the existence 
of the unconnected center node makes the phase currents dependent on each other. 
Kirchhoff's current law requires that the sum of the three phase currents be equal to 
zero. If the phase currents are related to each other by phase offsets of 0 ,̂=27r/3radE 



Figure 8-6. Y-connection configuration. 

or 120°E as shown in (8.3), where the phase A current has a Fourier series description 
as given in (8.22), then application of Kirchhoff's current law at the center node gives 

i8(0)+ib(0)+ic(e)  = o 
j r i „ e ' n B + j r + j r 7 , / ^ = 0 

/„[l+2cos(27TH/3)y"° =0 
(8.31) 

Since this expression must be zero for all harmonic indices n, 7„[l+2cos(2ro//3)] must 
be zero for all harmonic indices. As discussed earlier in the general drive configura-
tion discussion, the term in brackets is nonzero only when n is a multiple of three. As 



a result, for (8.31) to hold, the current cannot have any harmonics that are multiples 
of three. That is, the current cannot have triplen harmonics. 

Certainly the AC synchronous motor drive satisfies this constraint since sinusoidal 
currents are the fundamental or «=±1 harmonics. Though not readily apparent 
mathematically, the brushless DC motor drive satisfies this current constraint as well. 
Graphically, Fig. 8-2 shows that current flows into one phase and out of another at all 
instants, and therefore Kirchhoff's current law is met at the center node. 

Another way to look at the constraint imposed by Kirchhoff's current law is to rec-
ognize that once two of the three phase currents are set, the third phase current must 
be equal to the negative sum of the first two. Therefore, all three phase currents can-
not be independently controlled as they can in the full H-bridge configuration. 

4-Connection 
As an alternative to the Y-connection, the three motor phases can be connected in a 
zl-connection topology as shown in Fig. 8-7. Here the three motor phases are con-
nected to form a loop. As with the Y-connection, current flow is created by turning 
ON one or more upper transistor switches and one or more lower transistor switches 
in the figure. 

In practice, the 4-connection is seldom used because the topology allows currents 
to circulate around the loop or A That is, independent of external currents created by 
the transistor switches, the three back EMF sources add together to support circulat-
ing currents. This phenomena is identical to the current that can circulate among 
individual coils making up a phase winding when they are connected in parallel as 
shown in Fig. 4-32. 

Ignoring the transistor switches in Fig. 8-7, a circulating current in the A is created 
by the sum of the back EMFs acting on the phase resistances and inductances. If the 
back EMF shapes are described by Fourier series as given by (8.22), then the sum of 
the back EMF shapes are given by 

ka(0)+kl,(8)  + kc(O)= £ Kne'"e + £ K,/<B-^K  X 
| |=-oo U=—00 h=-°° 

= ¿K„[l  + 2cos(2xn/3)]e>"e  ( 8 ' 3 2 ) 

When this sum is zero, no current circulates around the loop. Since [1 +2cos(27rn/3)| is 
nonzero only when n is a multiple of three, circulating current is created only when 



the back EMF shape has triplen harmonics. Nonzero triplen harmonics in the back 
EMFs add together and create circulating currents at the triplen harmonic frequen-
cies. These currents increase the ohmic losses in the motor but do not add to the use-
ful torque produced. 

The AC synchronous motor drive does not exhibit circulating currents because 
sinusoidal back EMFs are the fundamental or «=±1 harmonics. No triplen harmonics 
exist. On the other hand, circulating currents are created in the brushless DC motor 
configuration having a trapezoidal back EMF as shown in Fig. 8-2. The trapezoidal 
waveform has a third harmonic amplitude approximately 22% as large as its funda-
mental component. This large triplen harmonic would create significant additional 
ohmic losses if the motor was connected in the ^-connection topology. 

In practice, the zi-connection topology finds application only at low power levels 
where the potential added losses are insignificant. 

8.6 Summary 

This chapter considered the fundamentals of torque production. In addition to the 
general back EMF case, the two most common motor configurations were illustrated. 
The brushless DC motor drive typically exhibits a trapezoidal back EMF and is 
driven using rectangular pulse currents. This drive is often called a six step drive or a 
square wave drive. Alternatively, the AC synchronous motor drive is characterized 



by sinusoidal back EMFs and is typically driven by sinusoidal currents. This drive is 
often called a sinewave drive. 

In addition to the fundamental of torque production, several basic power electronic 
drive topologies were illustrated. Of those discussed, the Y-connection overwhelm-
ingly appears in applications. 



This chapter focuses on motor performance. More specifically it focuses on providing 
guidance in the selection of magnet pole count Nm/  slot count Ns, and the ratio of the 
outside rotor radius Rw to the outside stator radius Rso. In addition, it develops pro-
cedures for computing cogging torque, radial force, core losses, and AC winding 
resistance. 

9.1 Motor Constant 

As has been demonstrated in earlier chapters, motor constant describes the torque 
production efficiency of a motor that is independent of the number of turns per coil 
and the motor current. Therefore, motor constant provides valuable insight into 
maximizing motor performance. 

General Sizing 
Before maximization of the motor constant is discussed, it is beneficial to identify 
how the dimensions of the ferromagnetic portions of the motor are related to the 
number of magnet poles, the number of slots, and the rotor outside radius. To sim-
plify this discussion consider the motor cross section shown in Fig. 9-1, and let the air 
gap magnetic field distribution be ideal as shown in Fig. 4-5. 

If one ignores the alternating direction of flux flow over alternating magnet faces, 
the total flux crossing the air gap in Fig. 9-1 can be written as 

¿total = B A = Bg2nRr0Lit (9.1) 

where B ? is the amplitude of air gap flux density and Lst is the axial stack length of 
the motor. This flux divides among the teeth and travels outward or inward depend-
ing on which magnet polarity faces each tooth. As a result, the magnitude of the flux 
flowing in each tooth is 



Figure 9-1. Typical motor cross section. 
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This tooth flux travels through the tooth body creating a flux density having a mag-
nitude of 

D _ A 

During the motor design process, the tooth body width zvth is adjusted to keep the 
flux density below the saturation level of the tooth ferromagnetic material. Once Bt is 
set, substitution of (9.2) into (9.3) and simple algebra gives the tooth body width as 

2 nRwBg 

This expression shows that the tooth body width is directly proportional to the 
rotor outside radius. Therefore, as Rr0 increases, z% increases at the same relative 
pace. In addition, wtb is inversely proportional to the number of stator slots Ns. As the 



number of slots increases, the tooth body width decreases by the same relative 
amount. The number of magnet poles N,„ does not appear in (9.1) since the total flux 
crossing the air gap is not a function of the number of magnet poles. Therefore, wt{, 
does not change as Nm varies. 

As illustrated in Fig. 4-1 and Fig. 7-10, the flux from each magnet splits into two 
halves, with each half forming a flux loop with one half the flux of the adjacent mag-
net. As such, one half of the flux from each magnet travels through the stator and 
rotor yokes. At the dashed radial lines in the rotor and stator yokes shown in Fig. 9-1, 
this flux produces flux densities of 

R 4W/2 
V = ( 9 ' 5 ) 

in the stator yoke and 

n L t d / 2 

ry ' wryKslLsl (9-6) 

in the rotor yoke, where <j>tolal in this case is the total flux leaving one magnet. Substi-
tution of (9.1) into (9.5) and (9.6) leads to expressions for the stator and rotor yoke 
widths of 

nR r oB s 

W s v " N K>B (9-7) 

and 

xRroB* 
Wry  ~ N K tB (9-8) 

'" m st ury 

respectively. 

These expressions show that the rotor and stator yoke widths are proportional to 
the outside rotor radius Rro, inversely proportional to the number of magnet poles 
Nm, and not a function of the number of stator teeth or slots Ns. While the relation-
ship with Rw is the same here as it was for the tooth body width (9.4), an opposite 
relationship exists for the parameters Nm and Ns. The stator and rotor yoke widths 
are not a function of the number of slots; whereas the tooth body width is not a func-
tion of the number of magnet poles. 



The size relationships (9.4), (9.7), and (9.8) play a fundamental role in determining 
motor performance. In particular, the tooth body width and stator yoke width in part 
determine the slot cross-sectional area available for windings. 

Motor Constant Maximization 
Because of the complexity involved in magnetic design, it is not possible to derive an 
analytical motor constant expression for a realistic motor that allows one to relate 
motor constant to motor design parameters. However, an analytic result can be 
derived by considering an ideal case where the air gap flux density is as shown in 
Fig. 4-5, and the motor has full pitch windings and one slot per pole per phase. This 
ideal case was originally considered in Chapter 4 and illustrated by example in Fig. 
4-11. 

In this ideal case, the torque produced by one phase was given by (4.11), which is 
repeated below 

\T\ = 2NmNBgLitRwi  ( 9 . 9 ) 

In this equation, N is the number of turns per coil and Nm is the number of magnet 
poles, which is equal to the number of current-carrying coils for this example. Since 
there are two coil sides per slot, each having N turns, the resistance per slot (4.36) 
becomes 

2 
R 

where 2N has been substituted for N to reflect the 2N turns per slot assumed by (9.9). 
Since there are Nm current-carrying coils involved in the production of the torque in 
(9.9), the total slot resistance is Nnl times larger than the slot resistance (9.10). 

Using the ideal torque (9.9) and total slot resistance, and ignoring the resistance of 
the end turns, one can write the motor constant (4.40) for one phase of this ideal 
motor as 

k ' " = ~ w s b = = ( 9 i d 

where K w b is the bare wire slot fill (4.33), and A. is the slot cross-sectional area avail-
able for windings. 



With the geometrical parameters identified in Fig. 9-1, As can be written as 

K -wsy)2 -{Rro  +g + dsi,t? -wtb (Rso-wsy-Rro-g-dM)  (9.12) 
K 

Substitution of the tooth body width (9.4) and stator yoke width (9.7) into (9.12) and 
substitution of (9.12) into the motor constant (9.11) provides a relationship describing 
the motor constant under ideal conditions. Since the resulting equation is long and 
cumbersome, it is not provided here. However, the relationships that result from the 
combination of (9.4), (9.7), (9.12), and (9.11) can be described. 

Based on (9.11), increasing the air gap flux density is the most straightforward way 
to maximize the motor constant. While motor constant appears to be directly propor-
tional to Bg, increasing the air gap flux density increases the tooth body width and 
stator yoke width, which decreases the slot cross-sectional area (9.12) in (9.11). As a 
result, motor constant increases nearly linearly with air gap flux density. This strong 
relationship between air gap flux density and motor constant exists because increas-
ing the air gap flux density contributes directly to the torque in the numerator of 
(9.11) but contributes only weakly to increased resistance in the denominator. 

The influence of rotor outside radius Rro on motor constant depends on whether the 
stator outside radius Rso is fixed or variable. If R s o increases as Rro increases, motor 
constant increases linearly with outside rotor radius. Under the assumption that Rso 

is fixed, increasing Rro does not have a strong influence on motor constant because 
increasing Rro decreases the slot cross-sectional area (9.12) in (9.11) as well. Increasing 
the rotor outside radius diminishes A, directly through the Rro terms in (9.12) and 
less significantly through wtb and wsy, which increase linearly with Rw. Although the 
influence of Rr„ on motor constant is not strong, it remains important. Practical expe-
rience has shown that the optimum Rr0 is typically between 40 and 65% of Rso. 

This issue of maximizing motor constant by optimizing the ratio Rr0/Rs0  can be visu-
alized by considering Fig. 9-2. Both motor cross sections in the figure describe four 
pole, twelve slot motors that have the same outside stator radius. Fig. 9-2a is a copper 
motor where there is greater room for windings and less magnet material. On the 
other hand, Fig. 9-2b is a magnet motor, having a larger outside rotor radius. In this 
case, there is less room for windings but significantly more magnet material. 

Inspection of (9.11) also shows that motor constant is related to the number of mag-
net poles. In addition to the square root relationship shown in (9.11), increasing the 
number of magnet poles also increases the slot cross-sectional area to a lesser extent 



because the stator yoke width decreases linearly with increasing N,„. As a result, with 
respect to magnet pole count, motor constant increases at a rate slightly faster than a 
square root rate. 



Motor constant as given by (9.11) ignores the winding end turns. Since the end 
turns create ohmic losses but do not produce torque, they directly diminish motor 
constant. This fact suggests that motor constant increases at a slightly greater rate 
with respect to Nm than that described in the preceding paragraph. This occurs 
because the length of the end turns are inversely proportional to the number of mag-
net poles since the angular coil pitch is 2/r/iV„.radM. The presence of end turns also 
suggests that motor constant decreases somewhat with increasing outside rotor 
radius. This occurs because end turn length is directly proportional to the distance 
between slots, which increases somewhat with respect to Rr0 if Rso is fixed. 

In summary, increasing the air gap flux density is the most significant way to 
increase motor constant. When the outside stator radius is fixed, the outside rotor 
radius plays an important but much less significant role in maximizing motor con-
stant. Increasing the number of magnet poles plays a more significant role than the 
outside rotor radius but a less significant role than increasing the air gap flux density. 

9.2 Cogging Torque Relationships 

Cogging torque, as illustrated previously in Chapter 4, describes the desire of the 
permanent magnets on the rotor to align with a maximum amount of ferromagnetic 
material. In chapter four it was shown that integral slot motors have greater cogging 
torque than fractional slot motors. This occurs because the cogging torques created 
by the magnets add in phase alignment in integral slot motors, whereas they are out 
of phase with each other in fractional slot motors. In addition to identifying a num-
ber of fundamental ways to minimize cogging torque, skewing the rotor magnets or 
stator slots was shown to minimize cogging torque. 

The fundamental properties of cogging torque described in Chapter 4 can be used 
to quantify the relationship among magnet pole count N„„ slot count Ns, and skew. 
The cogging torques experienced by all stator teeth have the same shape, but are off-
set from each other in phase by the angular slot pitch. Furthermore, cogging torque is 
periodic with respect to each magnet pole since South magnet poles create the same 
cogging torque as North magnet poles. As such, the fundamental frequency of the 
cogging torque is twice the fundamental electrical frequency whose period is one 
magnet pole pair. As a result, the cogging torque experienced by the kth stator tooth 
Tck(0)  can be written as the Fourier series 

T (f)\-  V T Z 2 ! 8 " ^ ) 
'ckWJ- 2 s 2 » e (9.13) 

U=-co 



where T„  are the Fourier series coefficients, 8 is in electrical measure, 6i is the angular 
slot pitch in electrical measure, and the factor of two in the exponent reflects the fact 
that the fundamental cogging frequency is twice the electrical frequency. 

Since the cogging torque of each tooth adds to create the net cogging torque of the 
motor, the motor cogging torque can be written as 

n - 1 

Tœg(9)=  ^Tck(e)  (9.14) 
fc=0 

Substituting (9.13) into (9.14) and simplifying leads to 

T C o g ( ° ) = t , m , ) e i " 2 6 (9.15) 

where the term in parentheses on the right hand side are the net cogging torque Fou-
rier series coefficients and 

Qn = ]Te~f2'M'  ( 9 A 6 ) 
k=0 

where 6=7iNm/Ns radE. 

The presence of skew modifies the net cogging torque by the skew factor (7.41), 
which becomes 

( 
S2„ = sine 

>viNmask 
(9.17) 

when expressed in terms of twice the electrical frequency to match (9.15). Applying 
(9.17) to (9.15) as described in Chapter 7 gives 

oo 

^ ( 0 ) = X ( T » 0 » S 2 » ) e / " 2 < ' (9.18) 
J|=-oo 

This expression describes the net cogging torque. The tooth Fourier series coeffi-
cients Tn  are determined by the magnetic field distribution around each tooth, the air 
gap length, and the size of the slot opening between teeth. Minimizing or eliminating 



cogging torque requires setting all Fourier series coefficients (T„0„S2„) in (9.18) to 
zero or minimizing the amplitude of the largest coefficients. Once the tooth Fourier 
series coefficients T„ are set by the chosen motor dimensions and magnet properties, 
minimizing or eliminating cogging torque requires study of the last two terms 0„ 
and S2n. For those harmonics where either of these terms are zero, the net cogging 
torque harmonic is zero. For example, if Qn is nonzero for some n, the nth cogging 
torque harmonic is zero if S2n is zero for this n. 

The zeros of S2n are given by the zeros of the sine function. Because this function is 
defined as sinc(x)=sin(x)/x, sinc(x) is zero whenever x is a nonzero multiple of n. For 
S2„ this occurs when 

<7 = N~ (9.19) 

where q is any nonzero integer. When there is zero skew, i.e., ask=Q, (9.19) does not 
hold for any q or n. This makes sense since S2„=l for all 11 when there is zero skew. 

The zeros of 0„ are not as straightforward to determine. Through careful analysis of 
many cases, it can be shown that in general 

0„ = 
lem ( N S / N J 

N, for n = q — — 
N 

(9.20) 
0 otherwise 

where lcm(x,i/) is the least common multiple of its arguments and q is any nonzero 
integer that results in an integer n. Based on this result, all cogging torque harmonics 
are zero except those for which 0„ is nonzero. In this case, the tooth cogging torque 
harmonic of all teeth simply add, making the net cogging torque a factor Ns greater 
than the individual tooth cogging harmonic. 

For skew to be effective at eliminating cogging torque the zeros of the sine function 
(9.17) must be zero at the same harmonic indices where 0„ is nonzero. There is no 
need for the sine function to be zero where 0„ is already zero. 

To investigate this possibility, consider the four pole, twelve slot motor illustrated 
in the cogging torque analysis conducted in Chapter 4. If a one slot pitch skew is 
used, i.e., 0^=1, then the zeros of S2n (9.17) appear at the harmonic indices 

n=3q 



where q is any nonzero integer. For this case, 0„ (9.20) is nonzero at the same har-
monic indices. Therefore, the zeros of the sine function appear exactly at the correct 
harmonic indices to cancel cogging torque harmonics that would otherwise be non-
zero. In this case, a one slot pitch skew eliminates the cogging torque. 

As another example, consider the four pole, fifteen slot motor also considered in 
Chapter 4. If a one slot pitch skew is used, then the zeros of S2„ (9.17) appear at the 
harmonic indices 

n=\5q 

where q is any nonzero integer. For this case 0„ (9.20) is nonzero at the same har-
monic indices. Therefore, a one slot pitch skew eliminates the cogging torque for this 
case as well. In fact, a one slot pitch skew always eliminates the cogging torque. For 
this particular four pole, fifteen slot case, skews of one half and one quarter slot pitch 
also eliminate the cogging torque. 

Because the indices in both (9.19) and (9.20) are harmonically related, i.e., if n satis-
fies both relationships, then all multiples of n satisfy them also. Therefore, the mini-
mum skew required to eliminate cogging torque can be determined by finding the 
first index n where both relationships hold. Doing so gives the minimum skew to 
eliminate cogging torque as 

* Ns 
a*k lem (Ns,Nm)  (9-21) 

This minimum skew may be easier to implement mechanically and will lead to less 
smoothing of the tooth flux and resulting back EMF waveforms. 

When skew is not used, (9.20) can be used to identify the harmonic index of the first 
cogging torque harmonic. If this index is ncog , then the cogging torque has a funda-
mental frequency 2n c o g greater than the electrical frequency of the motor. The higher 
this harmonic frequency is, the less objectionable the cogging torque will be for two 
reasons. First, because the Fourier series coefficients of smooth functions generally 
decrease in amplitude as harmonic index increases, the higher ncog is the lower the 
resulting cogging torque should be. And second, the higher the frequency is, the 
more the motor inertia filters or smoothes out the cogging torque ripple. 

Study of (9.20) shows that for motors having an integral slot pitch, i.e., NjNm=q 
where q is an integer, the first cogging torque harmonic index is ncog=q. This repre-
sents the worst case situation. On the other hand, for motors having a fractional slot 
pitch, where Ns and Nm share no common factor, ncog=Ns. This is the best case situa-



tion. Finally, when Ns and N„, share a common factor, i.e., when the greatest common 
divisor gcd(Ns,Nm) is equal to some integer p, structural periodicity exists around the 
air gap every 360/p°M and ncog=Ns/p. 

Given the net cogging torque Fourier series (9.18), computing the cogging torque 
requires computation of the cogging torque experienced by a single tooth (9.13) 
under zero skew conditions. Once this is known, the Fourier series coefficients T„ are 
easily computed. Assuming that the teeth are infinitely permeable, computation of 
the cogging torque requires knowledge of the magnetic field entering the shoe tips in 
the tangential direction. That is, B^r,6) is required in the slot openings between the 

stator teeth. Given this field, the tangential force density in N/m 
on the stator teeth 

can be shown to be 

= (9.22) 
ro 

The torque density associated with this force density is given by the product of the 
force density and the radius at which it acts, i.e., T=Fr,  or 

, „x B o M ) 
i e M ) = (9.23) 

Integration of this torque density over the cross-sectional area of the shoe tips on 
both sides of a tooth gives the cogging torque. Since the force experienced on oppo-
site sides of the tooth act in opposite directions, the cogging torque is given by the 
difference in force experienced by each tooth side. 

The simplest way to approximate Be(r,8)  is to use the circular-arc, straight-line flux 
flow model as shown in Fig. 9-3. With this assumption, B^r,6) is equal to the corre-
sponding radial magnetic field Bar(Rs,0)  as given in (7.1) as modified by the slot cor-
rection factor (7.9), which is illustrated in Fig. 7-3. 

Implementation of this technique for predicting cogging torque is straightforward, 
but the details involved are cumbersome. Because cogging torque is highly depend-
ent on the exact form of B^r,G), which is influenced by magnetic saturation of the 
shoe tip material, the accuracy of this prediction may not agree well with experimen-
tal measurements. As a result, the preceding analysis identifying harmonic content 
relationships of the cogging torque provides significant insight that is independent of 
the exact magnetic field distribution in the stator slots. 



£ 

I 
Figure 9-3. Circular-arc, straight-line flux path approximation. 

In summary, the cogging torque analysis conducted here provides guidance in the 
selection of the number of magnet poles Nm, the number of stator slots Ns, and in the 
amount of skew required in a motor design. Fractional slot motors where Nm and Ns 

do not share a common factor exhibit the lowest cogging torque under no skew con-
ditions. In addition, as N,„ and Ns increase, the higher the fundamental cogging 
torque frequency becomes, making it easier for the motor inertia to filter it out. 

9.3 Radial Force Relationships 

In addition to undesirable tangential force, i.e., cogging torque, a motor may experi-
ence an undesirable radial force between the rotor and stator that varies as the rotor 
rotates. As in the preceding cogging torque derivation, the force per tooth provides 
the basis for further analysis. In this case, the radial force experienced by the kth sta-
tor tooth Frk(6) can be written as the Fourier series 

Frk(0)=  £ F„e 
>2 (e-wy 

(9.24) 

where Fn are the Fourier series coefficients, 0 is in electrical measure and 9S is the 
angular slot pitch in electrical measure. The factor of two in the exponent reflects the 
fact that the fundamental radial force frequency is twice the electrical frequency 
because the radial force is the same over both South and North magnet poles. 

The radial force on the kth tooth is directed at an angle kdsm, where Qsm is the angu-
lar slot pitch in mechanical measure. As a result, the net force experienced by the 
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rotor due to all teeth can be found by summing the x- and y-direction components for 
each tooth. Doing so leads to a net x-direction force of 

N.-L 

= X F * ( 0 ) c o s ( f c 0 - ) = Z F " X " e i 2 " 9 (9.25) 
k=0 

where 

N.-l 
X„ = £ c o s (kdsm)e-i2"k0*  ( 9 2 6 ) 

k=0 

The net y-direction force is 

N<-1 
Fy = X Frk(0)sm(k6sm)=  £ W 2 " 0 (9.27) 

Jt=0 

where 

N,-1 
Y„ = X sm(ke s ,nV i 2"k 0* (9.28) 

t=o 

The effect of skew (9.17) can be included in (9.25) and (9.27). However, skew does not 
eliminate radial force but introduces an axial variation in the radial force and reduces 
its amplitude. Since this phenomenon is secondary to this discussion, skew is not 
considered further. 

Based on (9.25) and (9.27) the rotor experiences zero radial force if both (9.26) and 
(9.28) are zero for all harmonic indices n. These two expressions are zero whenever 
there is geometrical symmetry between the rotor and stator around the air gap. 
Stated mathematically, the rotor experiences zero net radial force whenever 

gcd(N,„,Nj>l (9.29) 

where gcd(x,y) is the greatest common divisor of its arguments. More specifically, 
when gcd(Ns,Nm)=^ where p> 1, symmetry exists between the rotor and stator that 
repeats every 360/p°M. For example, in the four pole, twelve slot case considered ear-
lier, gcd(12,4)=4 and the symmetry between the rotor and stator repeats every 90°M. 



Since the number of magnet poles is always an even number, there is zero net radial 
force whenever the number of slots is also an even number. Equation (9.29) is always 
met in this case. On the other hand, when the number of slots is an odd integer, the 
rotor experiences a net radial force whenever (9.29) is not met. For example, in a four 
pole, fifteen slot motor, gcd(15,4)=l and a net radial force exists. However, in a six 
pole, twenty-one slot motor, gcd(21,6)=3, and zero radial force exists. 

In those cases where a net radial force appears, it is beneficial to know the harmonic 
indices that contribute to the net force since these indices identify the relative speed 
at which the net radial force rotates with respect to the rotor speed. The harmonic 
indices that contribute to the net radial force satisfy 

(2q-l)Ns±l 
» - n ( 9 - 3 ° ) 

m 

where q is a positive integer. The radial force at all other harmonic indices is zero. 
The harmonic indices that satisfy (9.30) do not exist for all q, nor are they uniformly 
spaced. For example, in a four pole, fifteen slot motor, the harmonics that satisfy 
(9.30) are n—4,11,19,26,..., where the difference between indices alternates between 
7 and 8. For a ten pole, thirty-three slot motor, the harmonic indices that satisfy (9.30) 
are «=10,23,43,56,76,.. . , where the difference between indices alternates between 
13 and 20. In both of these examples, the first contributing harmonic index is equal to 
Nm. However, this is not always true. For example, in an eight pole, twenty-slot 
motor, the harmonic indices that satisfy (9.30) are 77 = 10,17,37,44,.. . , where the first 
contributing index is 10 rather than 8. 

In addition, it is true in general that the sum of the two numbers describing the 
alternating differences between indices for which nonzero radial force exists always 
equals the number of slots Ns. For example, in the four pole, fifteen slot motor the 
two numbers are 7 and 8, which sum to Ns=15. 

When Xn in (9.26) is nonzero, it always equals NJ2.  Similarly, when Yn in (9.28) is 
nonzero, it equals Ns/2  for those indices for which (9.30) is satisfied with the minus 
sign. And it equals -Ns/2  for those indices for which (9.30) is satisfied with the plus 
sign. For those cases in which radial force appears, it can be computed by determin-
ing the radial force experienced by a single tooth. From the Fourier series coefficients 
of this force Fn, equations (9.25) through (9.28) give the desired net radial force in the 
x- and indirections. The radial force on one tooth can be computed by integrating the 
radial force density in N/m 



Bj(Rs,9) 
( 9 - 3 1 ) 

over the surface of a tooth. In (9.31), B^R^B) is given by (7.1) evaluated at the stator 
radius Rs at the air gap. 

In summary, motors that do not have symmetry between the rotor and stator 
around the air gap will exhibit a net radial force having harmonic content above the 
fundamental electrical frequency of the motor. Since cogging torque is generally 
worse for motors having this symmetry, there is a tradeoff between minimum cog-
ging torque and the presence of net radial force. In most applications, net radial force 
has little impact on performance. However, in low noise applications such as hard 
disk drive spindle motors, the presence of net radial force can limit motor acoustic 
performance. 

9.4 Core Losses 
Basic Concepts 
In most motor designs, I R losses are the dominant contributor to reduced energy 
conversion efficiency. Core losses in the ferromagnetic portions of the motor are usu-
ally the next largest contributor to motor losses. As described qualitatively in Chapter 
2, core loss is the sum of hysteresis and eddy current losses. These two core loss com-
ponents have been studied extensively for many years. Some studies have focused on 
understanding and modeling the phenomena at the atomic level. Others have 
focused on developing core loss expressions that facilitate core loss prediction in 
actual devices such as motors and transformers. Still others have focused on develop-
ment of new material testing procedures that facilitate accurate curve fitting of meas-
ured material properties to core loss expressions. 

While the physical mechanisms that create core losses are well understood, applica-
tion of this knowledge to make accurate core loss predictions remains difficult for a 
number of reasons. These reasons include: 

• Core losses are created on a microscopic scale within a material, whereas 
core loss prediction uses a macroscopic scale based on assumptions of mag-
netic field uniformity throughout regions of the device. Therefore, the accu-
racy of core loss predictions depends on how well the chosen macroscopic 
regions model the material loss properties on a microscopic scale. 



• Core loss data for many common materials is only available for 50 or 60Hz 
operation using sinusoidal excitation. This 50 or 60Hz excitation does not 
produce an assumed ideal sinusoidal magnetic field when using the data. 

• Core loss data obtained from the commonly accepted Epstein Square Test is 
often of questionable value because standard test conditions do not match 
those of an actual motor. 

• Material properties can vary by as much as 30% from batch to batch and 
within the same batch. In addition, they can vary within individual lamina-
tions. 

• Core loss is significantly influenced by the mechanical stress and strain 
experienced both within the material and on its surfaces and edges. For this 
reason, motor laminations are often annealed after being stamped or cut. 
Since core loss predictions uniformly ignore this material influence, core 
loss predictions for nonannealed or improperly annealed laminations are 
invariably inaccurate. 

• Since the time variation of the magnetic field distribution within a motor is 
seldom sinusoidal, the accuracy of core loss predictions depends on how 
sinusoidal excitation data is used to generate core loss expressions that 
apply to nonsinusoidal magnetic fields. 

• Core losses are easier to predict with accuracy in regions where only the 
amplitude of the magnetic field changes with time, e.g., in the stator tooth 
bodies and stator yoke sections. In regions where both the amplitude and 
angular direction of the magnetic field varies with time, an additional core 
loss component appears. That is, in addition to traditional hysteresis and 
eddy current loss components, the material exhibits additional rotational 
losses. This additional loss mechanism is highly dependent on the trajectory 
taken by the amplitude and angular motion of the magnetic field in a 
region. In a motor, these additional rotational losses are created in the tran-
sition area between the stator teeth and the stator yoke. Studies have shown 
that rotational losses can double the core losses in a region. Because of the 
significant work required to identify magnetic field trajectories versus time 
and to convert this knowledge into viable core loss expressions that vary 
with the trajectory shape, rotational losses are often neglected or are crudely 
estimated. 

• Some materials exhibit an additional loss component in addition to hystere-
sis and eddy current components. This loss component, called the excess or 



anomalous loss, is least understood, is difficult to determine from traditional 
core loss data, and is commonly ignored when predicting core losses. 

Given all of these issues, core loss prediction using relatively simple modeling may 
indicate the correct trends from one motor design to the next but will not likely pro-
duce accurate estimates of core losses at any given operating point. 

Using knowledge of the fundamental principles that cause core losses, they can be 
reduced by: 

• Reducing the lamination thickness. Ideally, eddy current losses are directly 
proportional to the square of the lamination thickness. Therefore, if lamina-
tion thickness is reduced by a factor of two, eddy current losses decrease by 
a factor of four. 

• Increasing the resistivity of the lamination material. Eddy current losses are 
inversely proportional to material resistivity. Adding silicon to lamination 
steel is the most commonly adopted approach to increasing material resis-
tivity. 

• Annealing laminations after they have been stamped or cut. This eliminates 
the influence of mechanical stress on core loss. 

• Reducing the amplitude of the magnetic field within the material. Hystere-
sis losses are directly proportional to the amplitude of the magnetic field 
raised to a power between 1.5 and 2.5. Eddy current losses are directly pro-
portional to the square of the magnetic field amplitude. Using this property 
to reduce core loss is in direct conflict with maximizing torque production. 
As a result, other techniques for minimizing core losses are often imple-
mented first. 

• Reducing the number of magnet poles Nm. Hysteresis losses are directly 
proportional to the fundamental electrical frequency. Eddy current losses 
are directly proportional to the square of the fundamental electrical fre-
quency. Since the fundamental electrical frequency is Nm/2 times greater 
than the motor shaft speed, reducing the magnet pole count allows one to 
reduce core losses significantly without lowering the motor shaft speed. 

Core Loss Modeling 
With the preceding information in mind, this section illustrates one approach to esti-
mating core losses in a motor. The process develops a core loss expression that is fit 
to standard core loss data. Then, using expressions for the stator tooth and yoke flux 
densities, core losses are estimated. 



As stated in Chapter 2, hysteresis losses are typically characterized by 

P/i -kufòpk (9.32) 

where kh is a material dependent constant,/is the frequency of excitation, Bpk is the 
peak flux density, and n is a material dependent constant usually between 1.5 and 
2.5. Since n varies somewhat with the flux density amplitude, it is convenient to 
include this in (9.32) as 

where m is a material dependent constant. For materials having a given thickness, 
eddy current losses are typically characterized by 

where kc is a material dependent constant that is proportional to the square of the 
material thickness. The sum of (9.33) and (9.34) is the core loss experienced by the 
material for a sinusoidal magnetic field having an amplitude of Bpk and frequency/. 

In numerous studies, it has been shown that hysteresis losses are essentially inde-
pendent of the magnetic field waveform shape. As a result, (9.33) remains unchanged 
for other magnetic field waveforms. On the other hand, (9.34) applies only when the 
magnetic field is sinusoidal in shape. In the general case, eddy current losses are pro-
portional to the mean square value of the derivative of the magnetic field. That is, 
eddy current losses are proportional to the square of the RMS value of the derivative 
of the magnetic field. This makes sense because the voltage that creates the eddy cur-
rents is related to dB/dt  through Faraday's law (3.14). The square of the RMS value 
also makes sense because eddy current losses are I R losses, where J  is the RMS value 
of the eddy currents. To understand how (9.34) must be changed, let 

lh -KhJöpk (9.33) 

Pe=Kf 2 B 2 p k (9.34) 

B(t)  = Bpksin{27tft) (9.35) 

be the sinusoidal flux density in (9.34). The derivative of this expression is 

-jp- = 2nfBpk  cos(2K  ft) (9.36) 

for which the mean square value, or square of the RMS value is 



'dB 
dt 

= 2 n 2 f 2 B 2 p k ( 9 3 7 ) 

Rearranging this equation and substituting it into (9.34) leads to the more general 
expression for eddy current losses 

* e In n ~Tt\ (9-38) 

Given (9.33) and (9.34), core losses under sinusoidal excitation are 

Pcore = P„ + Pc= KPT*  + (9-39) 

whereas, using (9.33) and (9.38), core losses under arbitrary excitation are 

p _ p , p _ u . J w Éi. T 
lcore - l h + 1 e - KhJavk 2n2 dt (9.40) 

Based on these two core loss expressions, the coefficients kju ke, n, and m in (9.39) are 
determined by fitting (9.39) to material data in W/kg or W/lb generated under sinu-
soidal excitation conditions. Then, these coefficients are used in (9.40) to estimate 
core losses under nonsinusoidal excitation conditions. 

There are a number of approaches that can be used to determine the coefficients kh, 
ke, n, and m in (9.39) and (9.40). Since there are four unknowns at least four data 
points are required to find a unique solution. Given that (9.39) does not match meas-
ured data exactly, it is best to use numerous points and perform a least mean squares 
curve fit. This approach often leads to the best fit provided data points exist and are 
used that match the operating points / and Bpk expected in a motor. Since ke and k;, 
appear linearly iri (9.39), it is convenient to determine the coefficients by using linear 
least squares to find ke and k), after each iteration of a nonlinear algorithm for finding 
7i and m. The goodness of any fit should be determined by comparing measured data 
to data generated by the evaluation of (9.39). In many cases, it is necessary to weight 
the data during the fitting process to produce a meaningful result. The mismatch 
between (9.39) and measured data is often a significant source of error in addition to 
the previously-cited reasons for difficulties and errors in core loss predictions. 



Application to Motor Design 
Application of (9.40) for the estimation of core losses in motors is straightforward. If 
the magnetic field in a region is described by the Fourier series 

b ( 6 ) = f j b y ' e  ( 9 . 4 1 ) 

;j=-oo 

where 6 is in electrical measure, then Bjlk is simply 

Bpk=max(B(d))  (9.42) 

Using (A.15), time derivative of (9.41) is 

dB dddB v • R I'* 
(9-43) 

where (Dc=2rfc.  Applying (A.17), the mean square value of dB/dt  is found as 

( ( f ) } = 1 X I ^ B » | 2 (9.44) 

Substitution of (9.42) and (9.44) into (9.40) gives the core loss density in W/kg or W/lb 
for the region whose flux density is given by (9.41). The frequency/in (9.40) is equal 
to the fundamental electrical frequency fe  since that is the fundamental frequency of 
(9.41). 

In a brushless permanent magnet motor, the permanent magnet field creates almost 
no core losses in the rotor yoke because time-varying flux is created only by the small 
variation in magnet operating point as magnet material passes over the stator slot 
openings. Flowever, both the stator teeth and yoke have flux densities that fit (9.41). 

The stator tooth flux density is given by (7.23) and (7.24). Substituting this data into 
(9.41) gives the core loss density in the stator tooth body Multiplying this density by 

3 3 3 3 the tooth volume in m or in and mass density in lb/in or kg/m and the number of 
teeth Ns, produces an estimate of the total core loss for the stator teeth. If desired, a 
separate calculation can be made for the stator shoe area based on an estimate of the 
flux density in the shoe region. This same procedure applies to the stator yoke, 
whose flux density is given by (7.32) and (7.33). 



For both the stator tooth and stator yoke, there is some freedom in choosing the vol-
ume over which to compute the core losses. Because significant additional rotational 
losses occur in the transition area between the stator teeth and the stator yoke as 
illustrated in Fig. 9-4, it is common to let some or all of this transition area be 
included in the core loss calculations of both the stator teeth and stator yoke sections. 
Doing so produces an estimate of the additional rotational losses in the transition 
areas. 

Conclusion 
It is difficult to accurately estimate core losses in brushless permanent magnet 
motors. This difficulty exists for many reasons. Perhaps the most important reason is 
that core losses depend intimately on the magnetic field and material properties on a 
microscopic scale, whereas core loss prediction utilizes assumptions based on macro-
scopic field descriptions and material properties. 

9.5 AC Winding Resistance 

In addition to eddy current losses in stator laminations, the presence of a changing 
magnetic field within motor windings produces eddy currents. These currents 
induce a magnetic field in the winding conductors that attempts to cancel the applied 
magnetic field. When the applied magnetic field is due solely to current in the wind-
ing conductors, this phenomenon is called the skin effect.  On the other hand, if the 
magnetic field is due solely to a source outside the conductor, this phenomenon is 
called the proximity effect.  For motor windings buried in stator slots, both of these 
phenomena occur simultaneously. Each turn in the winding produces a magnetic 
field that interacts with it and all the other turns contained in the slot. 

The eddy currents created in a conductor due to the presence of a changing mag-
netic field forces current flowing in the conductor to crowd to the outer edges of the 
conductor. This outward crowding forces the conductor current through a smaller 

Figure 9-4. Transition area between stator teeth and stator yoke. 



cross-sectional area and thereby increases the resistance of the conductor, which in 
turn increases the I R losses and reduces motor efficiency. 

As described in Chapter 4, windings in stator slots are immersed in a magnetic field 
that crosses from one side of the slot to the other as shown in Fig. 4-29, a phenome-
non that is repeated below as Fig. 9-5. This magnetic field is due to the conductor cur-
rent itself. The magnetic field from the rotor magnets does not cross the slots but 
rather travels through the stator teeth to the stator yoke as described in Chapter 7. 
The field intensity crossing the slot as given by (4.23) leads to expressions for the slot 
leakage inductance. This same magnetic field increases the resistance of the slot con-
ductors, i.e., it increases the slot resistance. 

Computation of the induced eddy currents and the current crowding that results 
from them require the solution of a one-dimensional diffusion equation. This partial 
differential equation has an analytic solution under reasonable geometrical assump-
tions. Because of the complexity of this solution, only the results are presented here. 

For a rectangular-shaped slot as shown in Fig. 9-5, containing N turns arranged uni-
formly in the slot as a matrix of conductors nj rows deep and nw columns across, the 
total slot resistance can be written as 

¡Slot ~ R-dc AF(A) + f (« d 2 - l )AG(A)] 

where R(/c is the slot resistance at zero frequency, i.e., at DC, and where 

(9.45) 

sinh ( 2 A ) + sin ( 2 A ) 
cosh (2A)-cos(2A) (9.46) 

h 

Figure 9-5. Magnetic field crossing a slot due to winding current in the slot. 



G(A) sinh(A)-sin(A) 
cosh (A) + cos (A) (9.47) 

and 

8 (9.48) 

in which dwi, is the bare wire diameter and 

(9.49) 

is the skin depth of the conductor. As defined, skin depth is the radial distance over 
which the current amplitude drops to e 1 or about 37% of its value at the conductor 
outer surface. In (9.49), co is the frequency of operation, ¡J. is the permeability of the 
conductor, and p is the material resistivity as defined in (4.14). As an example, the 
skin depth of copper wire at 60Hz is 8.53mm. At 600Hz the skin depth is 2.7mm. At 
6000Hz the skin depth is 0.853mm. 

The complexity of (9.45) makes it difficult to visually identify how slot resistance 
varies with frequency. However, Fig. 9-6 shows Rsiot/R,k horn (9.45) versus A for a 
variety of nd values. Clearly the slot resistance increases as the number of conductors 
deep increases. Moreover, the amount of increase is proportional to the ratio of the 
conductor diameter to the skin depth. Although this ratio increases with the square 
root of frequency, the rate of increase in resistance with frequency is not as clear 
because of the complexity of F(A)  and G(zi) in (9.45). 

When the number of conductors deep is large, e.g., nd>5, (9.45) can be substantially 
simplified. With the further practical assumption that du,i,<8, the slot resistance (9.45) 
is closely approximated by 

ŝ/ol R. 'tic Rdc 
- R iic 9 8 

\2 
dwb 
8 

\2 
(9.50) 

The second term inside the square brackets in this equation is the ratio of the AC to 
DC slot resistance. This term is proportional not only to the square of the ratio of the 
conductor diameter to the skin depth but also to the square of the ratio of the slot 
depth to the skin depth. Thus, deeper slots cause a greater increase in AC ohmic 



Figure 9-6. Normalized slot resistance versus A. 

losses. The effective appearance of ¿T4 in this term also implies that the ohmic losses 
are proportional to co because of (9.49). Therefore AC ohmic losses increase with the 
square of frequency. 

Because the winding material is linear magnetically and electrically (9.50) applies 
independently to each frequency of interest. When a motor is driven with sinusoidal 
currents, (9.50) applies with a>=a>e. If these sinusoidal currents are approximated by 
the use of pulse-width-modulation, i.e., PWM, then additional AC ohmic losses 
appear at the PWM frequency, £»= Cfyu„„. In this case, the associated current is the RMS 
value of the PWM ripple at the PWM frequency. 

9.6 Summary 

In this chapter a variety of performance topics were presented. Because of their uni-
versal value and utility as a performance measure, the influence of motor design 
parameters on motor constant was discussed. In particular, an analytic motor con-
stant expression was derived for the ideal full pitch winding case. This expression 
facilitated identification of key geometric parameters that maximize motor constant. 
Next, cogging torque and radial force expressions were presented. From these 
expressions the effects of magnet pole count, slot count, and skew on these motor 



performance measures were identified. Because of their significant role in motor per-
formance, a detailed discussion of core losses was presented. This discussion 
included identification of techniques to minimize them, difficulties in making accu-
rate predictions of core losses, and presentation of one technique for estimating core 
losses from published core loss data. Lastly, expressions were presented that describe 
the increased winding resistance seen by currents at the fundamental electrical fre-
quency and at PWM frequencies. 





This chapter demonstrates the concepts presented in the preceding chapters by docu-
menting example motor designs. The results presented here utilize the equations and 
procedures developed in the previous chapters. In addition, they rely on geometric 
calculations and material properties that were not presented. 

Common Characteristics 
To facilitate comparisons among the designs, all motor designs share the following 
characteristics: 

• The stator outside radius is Rso=50mm. 

• The motor axial length is Ls/=100mm. 

• The rotor outside radius Rm is chosen to maximize motor constant Km. 

• The stator tooth body width wtb, stator yoke width wsy, and rotor yoke width 
wry are adjusted to keep the peak flux density in the regions close to 1.4T. 

• No skewing of magnets or stator slots is employed. 

• The ferromagnetic portions of the motor are constructed using common, 
high quality electrical steel. 

• The radial magnet length is /„,=4mm and the air gap length is g=lmm. 

• The magnets are radially magnetized and operate at Br=1.3T and /iR=1.05. 

• The angular magnet pole width is set to 160°E, which gives a magnet frac-
tion of am=160°E/180°E=0.89. 

• The covered wire slot fill factor is set to kwc=60%. 

• The phase currents are sinusoidal. 

• The conductor current density is set to /=5Arms/mm . 

• The windings operate at a temperature of 50°C. 

• Windings are placed using the algorithm developed in Chapter 6. 



The preceding common characteristics are not optimum for many designs but do 
reflect values typical to many designs. The parameters chosen promote comparison 
among motor designs by fixing important performance characteristics. For example, 
by setting the slot fill factor and conductor current density rather than the wire gage 
and conductor current, all motor designs have the same slot current density. So, 
while the total slot ampere-tums NI  changes from design to design, the I R losses per 
unit slot volume are fixed. Because motor performance is fundamentally constrained 
by the ability to dissipate heat, fixing the I R losses per unit slot volume places all 
motor designs on a equal footing with respect to thermal capabilities. 

Since motor constant Km describes the fundamental torque production efficiency of 
a motor, valid performance comparisons based on motor constant require that it be 
maximized with respect to motor volume. For this reason, the outside rotor radius of 
each design is chosen to maximize motor constant. As described in Chapter 9, motor 
constant is not a strong function of rotor outside radius when the motor outer diame-
ter is fixed. As a result, while there is an optimum Rro, radii in the neighborhood of 
the optimum produce nearly the same motor constant. 

The remainder of the parameters fix the motor magnetic operating point across all 
designs. While this condition does not fix the amount of permanent magnet material 
used, it fixes the contribution of the permanent magnets on motor performance. 

While the presented designs focus on motor performance, they ignore cost. Though 
immensely important, the material and manufacturing cost of the designs cannot be 
compared using the information presented in this text. As a result, it is not possible to 
predict designs that maximize the ratio of performance to cost. 

Presented Results 
Each motor design presented here utilizes two facing pages. The information con-
tained on the facing pages includes: 

• The table at the top of the left hand page identifies the number of magnet 
poles N„„ the number of stator slots Ns used in the design, and the number 
of slots per pole per phase Nspp=Ns/Nm/Nph. 

• This table also contains important performance data. The ratio of the rotor 
outside radius to the stator outside radius RrofRso  identifies the rotor radius 
that maximizes motor constant Km (4.40), which is given in N-m/VW. Though 
not used in the design computations, the minimum skew required to elimi-
nate cogging torque (9.21) is given in terms of slot pitches. Finally, the 
first or fundamental harmonic index of the cogging torque nco„, given by 



smallest value of n that satisfies (9.20), describes the relative harmonic fre-
quency of the cogging torque. 

• The middle of the left hand page shows a cross section of the motor design. 
This figure illustrates the relative dimensions of the design. 

• The bottom of the left hand page contains motor winding information. The 
table shown identifies each coil in each phase. The coil angle describes the 
relative angle of each coil in a given phase. This information is used to com-
pute the winding factor Kwn. As described in Chapter 6, for each phase, In 
and Out describes the slot number and direction for each coil making up 
each phase winding. 

• Motor back EMFs are shown at the top of the right hand page. The figure 
depicts the phase back EMF e}lh(0) (6.11). In addition, the figure shows the 
line-to-line back EMF, which appears across two windings when the phases 
are connected in the Y-connection as shown in Fig. 8-6. In all designs, the 
back EMF amplitudes are normalized by the peak value of the line-to-line 
back EMF. 

• The relative harmonic content of the phase back EMF eph(0)  is shown in the 
middle of the right hand page. That is, the amplitude of the higher harmon-
ics in epft(8)  are shown relative to that of the fundamental component at har-
monic index n=1. For example, if the third harmonic is shown at a level of 
20%, then the third harmonic has an amplitude 20% of that of the funda-
mental. This plot provides information about back EMF harmonic distor-
tion. 

• At the bottom of the right hand page, the amplitude of the winding factor 
Kwll (6.13) as a function of harmonic index is shown. This distribution 
describes how the harmonics of the coil back EMFs add when all coils are 
connected in series. 

Notes 
• Not all valid combinations of magnet pole and slot counts are considered. 

• Some performance data exhibits slight variability because the tooth body 
width and rotor and stator yoke widths have not been iteratively adjusted to 
produce identical magnetic circuit reluctance factors. 

• The designs illustrated are simply that—illustrations. They may be good 
starting points for actual designs, but they are not necessarily optimal in any 
way. 
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Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

9 11 13 15 17 19 21 
Harmonic Index, n 

Winding Factor Amplitudes 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 

- © 

n r-
<3 © © © © © © © © -

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Nm Nsvv RJRso a*sfc 1 1 cos 
27 8 1.125 0.6 1.05 0.125 27 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 4 19 22 10 13 
2 20 1 25 19 16 10 7 
3 -20 7 4 25 22 16 13 
4 13.33 8 11 26 2 17 20 
5 -6.67 14 11 5 2 23 20 
6 -26.67 14 17 5 8 23 26 
7 26.67 15 18 6 9 24 27 
8 6.67 21 18 12 9 3 27 
9 -13.33 21 24 12 15 3 6 
10 
11 
12 



A/m=8, Ns=27 

Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns Nm N RJRso ncos 
30 8 1.25 0.6 1.02 0.25 15 

Coil Coil Phase A Phase B Phase C 

No. Angle, °E In Out In Out In Out 
1 0 1 4 21 24 11 14 
2 12 8 5 28 25 18 15 
3 -24 8 11 28 1 18 21 
4 24 9 12 29 2 19 22 
5 -12 15 12 5 2 25 22 
6 0 16 19 6 9 26 29 
7 12 23 20 13 10 3 30 
8 -24 23 26 13 16 3 6 
9 24 24 27 14 17 4 7 
10 -12 30 27 20 17 10 7 
11 
12 
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Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

9 11 13 15 17 19 21 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



N m N RJRso "cos 
33 8 1.375 0.6 1.06 0.125 33 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 5 23 27 12 16 
2 5.45 1 30 23 19 12 8 
3 -5.45 9 5 31 27 20 16 
4 -10.91 9 13 31 2 20 24 
5 -16.36 17 13 6 2 28 24 
6 -21.82 17 21 6 10 28 32 
7 21.82 18 22 7 11 29 33 
8 27.27 18 14 7 3 29 25 
9 -27.27 25 21 14 10 3 32 
10 10.91 26 30 15 19 4 8 
11 16.36 26 22 15 11 4 33 
12 
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7 9 11 13 15 17 19 21 
Harmonic Index, n 

C7 o O o o 
7 9 11 13 15 17 19 21 

Harmonic Index, n 
Winding Factor Amplitudes 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
201 

Electrical Position 



Ns N m N Rro/Rso "coy 
36 8 1.5 0.6 1.0 7 0.5 9 

Coil Coil Phase A Phase B Phase C 

No. Angle, °E In Out In Out In Out 
1 0 1 5 7 11 4 8 
2 20 1 33 7 3 4 36 
3 -20 9 5 15 11 12 8 
4 0 10 14 16 20 13 17 
5 20 10 6 16 12 13 19 
6 -20 18 14 24 20 21 17 
7 0 19 23 25 29 22 26 
8 20 19 15 25 21 22 18 
9 -20 27 23 33 29 30 26 
10 0 28 32 34 2 31 35 
11 20 28 24 34 30 31 27 
12 -20 36 32 6 2 3 35 
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Nm N RJRso "cos 
9 10 0.3 0.6 1.28 0.1 9 

Coil 
No. 

Coil 
Angle, °E 

Pha 
In 

se A Pha 
Out In 

se B Pha 
Out In 

seC 
Out 

1 
2 
3 

0 
-20 
20 

1 
1 
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2 4 
9 4 
2 6 

5 7 
3 7 
5 9 

8 
6 
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4 
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6 
7 
8 
9 
10 
11 
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Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns Nm N Rro/Rso Km o*sfc ncos 
12 10 0.4 0.6 1.19 0.2 6 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 5 6 9 10 
2 -30 3 2 7 6 11 10 
3 0 8 7 12 11 4 3 
4 -30 8 9 12 1 4 5 
5 
6 
7 
8 
9 

10 
11 
12 
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Electrical Position 

Phase Back EMF Harmonie Amplitudes Relative to Fundamental 
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3 5 7 9 11 13 15 17 19 21 
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Ns Nm N 
svv 

RJRso K>n 0<*sk 1 1 cox 
15 10 0.5 0.6 1.1 0.5 3 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 3 4 2 3 
2 0 4 5 6 7 5 6 
3 0 7 8 9 10 8 9 
4 0 10 11 12 13 11 12 
5 0 13 14 15 1 14 15 
6 
7 

O 
9 
10 
11 
12 
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10 

a" 5 

Harmonic Index, n 

Winding Factor Amplitudes 

1 
0.9 
0.8 
0.7 
0.6 

ÉS' 0.5 
0.4 
0.3 
0.2 
0.1 

0 

1 1 1 r ~~l 1 1 r-

© 

Q 
-© ® Q q ©_ -e ©-

3 5 7 9 11 13 15 17 19 21 

I r~ 
9 9 9 0 0 © © © 9 © Q . 

1 3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns Kn Nsvp R r o/R s o 0?sk "cos 
18 10 0.6 0.6 0.94 0.2 9 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 7 8 13 14 
2 20 4 3 10 9 16 15 
3 -20 8 9 14 15 2 3 
4 0 11 10 17 16 5 4 
5 20 12 13 18 1 6 7 
6 -20 18 17 6 5 12 11 
7 

O 
9 
10 
11 
12 
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Electrical Position 

Phase Back EMF Harmonie Amplitudes Relative to Fundamental 

7 9 11 13 15 
Harmonie Index, n 

Winding Factor Amplitudes 
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Ns N RJRS0 Km ncos 
24 10 0.8 0.62 1.13 0.2 12 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 3 9 11 17 19 
2 30 1 23 9 7 17 15 
3 -30 5 3 13 11 21 19 
4 15 6 8 14 16 22 24 
5 -15 10 8 18 16 2 24 
6 0 15 13 23 21 7 5 
7 15 20 18 4 2 12 10 
8 -15 20 22 4 6 12 14 
9 
10 
11 
12 
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Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns Nm N Rro/Rso Km "cos 
30 10 1 0.62 1.21 1 3 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 4 5 8 3 6 
2 0 1 28 5 2 3 30 
3 0 7 4 11 8 9 6 
4 0 7 10 11 14 9 12 
5 0 13 10 17 14 15 12 
6 0 13 16 17 20 15 18 
7 0 19 16 23 20 21 18 
8 0 19 22 23 26 21 24 
9 0 25 22 29 26 27 24 
10 0 25 28 29 2 27 30 
11 
12 
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Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
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Ns K , N 
* spp 

RJRso K»t ncox 

33 10 1.1 0.62 1.16 0.1 33 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 4 12 15 23 26 
2 16.36 1 31 12 9 23 20 
3 -16.636 7 4 18 15 29 26 
4 21.82 8 11 19 22 30 33 
5 5.45 14 11 25 22 3 33 
6 -10.91 14 17 25 28 3 6 
7 -27.27 20 17 31 28 9 6 
8 10.91 21 24 32 2 10 13 
9 27.27 21 18 32 29 10 7 
10 -5.45 27 24 5 2 16 13 
11 -21.82 27 30 5 8 16 19 
12 



Nm= 10, Ns-33 

Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
201—i r-

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 
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"s Nm N RJRso Km «*sfc "eoe 
36 10 1.2 0.62 1.12 0.2 18 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 4 13 16 25 28 
2 30 1 34 13 10 25 22 
3 -30 7 4 19 16 31 28 
4 -10 8 11 20 23 32 35 
5 20 8 5 20 17 32 29 
6 10 15 12 27 24 3 36 
7 -20 15 18 27 30 3 6 
8 0 22 19 34 31 10 7 
9 20 23 26 35 2 11 14 
10 -10 29 26 5 2 17 14 
11 10 30 33 6 9 18 21 
12 -20 36 33 12 9 24 21 



Wm=10, Ns=36 

Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 
Harmonic Index, n 

19 21 



Ns Nm ^svit Rro/R  so a*Sk "eoe 
18 12 0.5 0.62 1.15 0.5 3 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 3 4 2 3 
2 0 4 5 6 7 5 6 
3 0 7 8 9 10 8 9 
4 0 10 11 12 13 11 12 
5 0 13 14 15 16 14 15 
6 0 16 17 18 1 17 18 
7 
8 
9 
10 
11 
12 



Nm=12, Ns=18 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
101—î 1 1 1 r-

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 
î 1 1 1 1 1— 

1 3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 

Electrical Position 



Ns N m NSpp RJRso "eoe 
27 12 0.75 0.62 1.23 0.25 9 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 3 13 15 7 9 
2 20 1 26 13 11 7 5 
3 -20 5 3 17 15 11 9 
4 0 10 12 22 24 16 18 
5 20 10 8 22 20 16 14 
6 -20 14 12 26 24 20 18 
7 0 19 21 4 6 25 27 
8 20 19 17 4 2 25 23 
9 -20 23 21 8 6 2 27 
10 
11 
12 



Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
201—î 1 1 r 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 

Electrical Position 



Ns Nm N RJRso a*sfc "eoe 
36 12 1 0.63 1.29 1 3 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 4 5 8 3 6 
2 0 1 34 5 2 3 36 
3 0 7 4 11 8 9 6 
4 0 7 10 11 14 9 12 
5 0 13 10 17 14 15 12 
6 0 13 16 17 20 15 18 
7 0 19 16 23 20 21 18 
8 0 19 22 23 26 21 24 
9 0 25 22 29 26 27 24 
10 0 25 28 29 32 27 30 
11 0 31 28 35 32 33 30 
12 0 31 34 35 2 33 36 
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Electrical Position 

Phase Back EMF Harmonie Amplitudes Relative to Fundamental 

9 11 13 15 17 19 21 
Harmonie Index, n 

Winding Factor Amplitudes 
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Ns NM N RJRSO KM a*st ^COG 
12 14 0.28571 0.62 1.39 0.14286 6 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 9 10 5 6 
2 30 3 2 11 10 7 6 
3 0 8 7 4 3 12 11 
4 30 8 9 4 5 12 1 
5 
6 
7 

O 
9 
10 
11 
12 
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Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
20 I 1 1 1 r i r 
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7 9 11 13 15 17 19 21 
Harmonic Index, n 
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Ns Nm N RJRso 0?sk "eoe 
15 14 0.35714 0.62 1.35 0.071429 15 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 11 12 6 7 
2 12 1 15 11 10 6 5 
3 -12 3 2 13 12 8 7 
4 -24 3 4 13 14 8 9 
5 24 14 15 9 10 4 5 
6 
7 
o 
o 
9 
10 
11 
12 



Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
201—i 1 r-

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

19 21 
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Ns N m N 
SVP 

RJRsc "eoe 
21 14 0.5 0.63 1.21 0.5 3 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 3 4 2 3 
2 0 4 5 6 7 5 6 
3 0 7 8 9 10 8 9 
4 0 10 11 12 13 11 12 
5 0 13 14 15 16 14 15 
6 0 16 17 18 19 17 18 
7 
Q 

0 19 20 21 1 20 21 

9 
10 
11 
12 



3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
10 — I 1 1 1 1 1 1 1 1 1— 

Winding Factor Amplitudes 
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m m yj m m m m 
9 11 13 15 17 19 21 
Harmonie Index, n 



Ns N m NSpt> Rro/Rso Km 
24 14 0.57143 0.64 1.02 0.14286 12 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 17 18 9 10 
2 30 4 3 20 19 12 11 
3 -15 7 6 23 22 15 14 
4 15 8 9 24 1 16 17 
5 0 14 13 6 5 22 21 
6 -15 18 19 10 11 2 3 
7 15 21 20 13 12 5 4 
8 -30 24 23 16 15 8 7 
9 
10 
11 
12 



Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

7 9 11 13 15 
Harmonic Index, n 

19 21 



Nm N Rr0/Rs0 Km 
27 14 0.64286 0.64 0.95 0.071429 27 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 19 20 10 11 
2 6.67 4 3 22 21 13 12 
3 13.33 5 6 23 24 14 15 
4 20 8 7 26 25 15 16 
5 26.67 9 10 27 1 18 19 
6 -26.67 20 21 11 12 2 3 
7 -20 23 22 14 13 5 4 
8 -13.33 24 25 15 16 6 7 
9 -6.67 27 26 18 17 9 8 
10 
11 
12 



Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns Nm N RJRso Km 0?sk " cog 

30 14 0.71429 0.64 1.25 0.14286 15 

Coil Coil Phase A Phase B Phase C 

No. Angle, °E In Out In Out In Out 
1 0 1 3 21 23 11 13 
2 12 1 29 21 19 11 9 
3 -12 5 3 25 23 15 13 
4 -24 5 7 25 27 15 17 
5 12 14 16 4 6 24 26 
6 24 14 12 4 2 24 22 
7 0 18 16 8 6 28 26 
8 -12 18 20 8 10 28 30 
9 -24 22 20 12 10 2 30 
10 24 27 29 17 19 7 9 
11 
12 



Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
20 I i 1 r 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns Nm N Km ncot 

15 16 0.3125 0.64 1.42 0.0625 15 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 6 7 11 12 
2 -12 1 15 6 5 11 10 
3 12 3 2 8 7 13 12 
4 24 3 4 8 9 13 14 
5 -24 14 15 4 5 9 10 
6 
7 

O 
9 
10 
11 
Ï2 
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Phase Back EMF Harmonic Amplitudes Relative to Fundamental 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

7 9 11 13 15 17 19 21 
Harmonic Index, n 

Electrical Position 



N,„ NSpp RnJRso Kn tf'sk ncog 

18 16 0.375 0.64 1.34 0.125 9 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 7 8 4 5 
2 20 1 18 7 6 4 3 
3 -20 3 2 9 8 6 5 
4 0 10 11 16 17 13 14 
5 20 10 9 16 15 13 12 
6 -20 12 11 18 17 15 14 
7 
8 
9 
10 
11 
12 
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Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
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Harmonic Index, n 
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Nm Nspp RJRso 1 1 cog 

21 16 0.4375 0.64 1.25 0.0625 21 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 8 9 15 16 
2 8.57 6 5 13 12 20 19 
3 17.14 9 10 16 17 2 3 
4 -25.71 11 10 18 17 4 3 
5 -17.14 14 15 21 1 7 8 
6 25.71 14 13 21 20 7 6 
7 -8.57 19 18 5 4 12 11 

O 
9 
10 
11 
12 



-e © © © © ©-
9 11 13 15 17 19 21 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
10 1 1 1 1 r- 1 1 1 1 1 

Electrical Position 



Ns Nm N Rro/Rso "cos 
36 16 0.75 0.64 1.29 0.25 9 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 3 13 15 7 9 
2 20 1 35 13 11 7 5 
3 -20 5 3 17 15 11 9 
4 0 10 12 22 24 16 18 
5 20 10 8 22 20 16 14 
6 -20 14 12 26 24 20 18 
7 0 19 21 31 33 25 27 
8 20 19 17 31 29 25 23 
9 -20 23 21 35 33 29 27 
10 0 28 30 4 6 34 36 
11 20 28 26 4 2 34 32 
12 -20 32 30 8 6 2 36 



Wm=16, A/s=36 

Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
20 I — r 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns N m N s p ( ) RJRso C?sk " cog 

18 20 0.3 0.64 1.49 0.1 9 

Coil Coil Phase A Phase B Phase C 

No. Angle, °E In Out In Out In Out 
1 0 1 2 13 14 7 8 
2 -20 1 18 13 12 7 6 
3 20 3 2 15 14 9 8 
4 0 10 11 4 5 16 17 
5 -20 10 9 4 3 16 15 
6 20 12 11 6 5 18 17 
7 

O 
9 
10 
11 
12 



Electrical Position 

Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
1 0 r w 

7 9 11 13 15 
Harmonic Index, n 

Winding Factor Amplitudes 

3 5 7 9 11 13 15 17 19 21 
Harmonic Index, n 



Ns N m TV RJRso Km "coj? 
24 20 0.4 0.64 1.3 7 0.2 6 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 17 18 9 10 
2 -30 3 2 19 18 11 10 
3 0 8 7 24 23 16 15 
4 -30 8 9 24 1 16 17 
5 0 13 14 5 6 21 22 
6 -30 15 14 7 6 23 22 
7 0 20 19 12 11 4 3 
8 -30 20 21 12 13 4 5 
9 
10 
11 
12 



Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
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Ns N m N s v v R J R S 0 Km ncos 

36 20 0.6 0.64 1.01 0.2 9 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 25 26 13 14 
2 20 4 3 28 27 16 15 
3 -20 8 9 32 33 20 21 
4 0 11 10 35 34 23 22 
5 20 12 13 36 1 24 25 
6 -20 18 17 6 5 30 29 
7 0 19 20 7 8 31 32 
8 20 22 21 10 9 34 33 
9 -20 26 27 14 15 2 3 
10 0 29 28 17 16 5 4 
11 20 30 31 18 19 6 7 
12 -20 36 35 24 23 12 11 
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Phase Back EMF Harmonic Amplitudes Relative to Fundamental 
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Winding Factor Amplitudes 
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iVs Nm NSvv RJRso <?sk "cos 
27 24 0.375 0.66 1.42 0.125 9 

Coil Coil Phase A Phase B Phase C 
No. Angle, °E In Out In Out In Out 

1 0 1 2 7 8 4 5 
2 20 1 27 7 6 4 3 
3 -20 3 2 9 8 6 5 
4 0 10 11 16 17 13 14 
5 20 10 9 16 15 13 12 
6 -20 12 11 18 17 15 14 
7 0 19 20 25 26 22 23 
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Appendix A 
Fourier Series 

Fourier series can be applied to many aspects of motor analysis since rotary actuators 
are inherently periodic. This appendix contains basic information that supports the 
use of Fourier series in this text. Because periodicity in this text is with respect to 
angle 0, the treatment that follows uses 6 instead of co0t as the fundamental argu-
ment. 

A.1 Definition 

There are three common forms for the Fourier series. They are (a) the trigonometric 
form 

f  (6)  = a0 + cos(n6)  + bn sin(n6) (A.1) 

the alternate trigonometric form 

(A.2) 
«=i 

and the exponential form 

m^iLfn^ (A.3) 

where j = V^l , n is the harmonic number or index, and a,u bn, cn, and/„ are Fourier 
series coefficients. 



Of these forms, the trigonometric is convenient because sine and cosine evoke clear 
visual images. On the other hand, the exponential is easiest to manipulate mathe-
matically because only one set of coefficients exists. For this reason, this text concen-
trates on the exponential form. 

A.2 Coefficients 

All of the above Fourier series descriptions are equivalent. Given one form, the other 
forms are easily found by converting Fourier series coefficients from one form to 
another. The following equations summarize the relationships among the coefficients 

ao=co = fo 

fl„=2Re(/„) 

b„ - ~2Im(/„ ) 

ipn = tan -1 — (A.4) 
"n 

Because the Fourier series forms are related simply, it is beneficial to use the expo-
nential form mathematically, and then convert results to the trigonometric form for 
display when desired. 

The coefficients for the exponential form are given by 

where the integration is over any period of length 2K. These coefficients form a com-
plex conjugate set whenf(0) is a real-valued function, that is 

fn=f-n  (A.6) 

where * denotes complex conjugation. Therefore, it is only necessary to compute the 
positive coefficients and use (A.6) to find the negative coefficients. 



A.3 Symmetry Properties 

Sometimes f(6)  has identifiable symmetry properties. When this occurs, the computa-
tion of Fourier series coefficients is simplified. More importantly coefficients become 
real or imaginary, or some coefficients become zero. 

When f(0)=  f(-0),  the function is said to be even. In this case, the Fourier coefficients 
have zero imaginary part, i.e., fn~Re(f„).  In addition, (A.5) can be rewritten as 

f„=^[f(9)cos(nd)de  (A.7) 

When/(#)=-/(-$), the function is said to be odd. In this case, the Fourier coefficients 
have zero real part, i.e., fn=\vt\{fn).  In addition, (A.5) can be rewritten as 

fn=-j^[f(e)sm(nd)d6  (A.8) 

In addition to these basic symmetries, when f(6)=-f{-&Jrïï),  the function is said to 
have odd halfwave  symmetry. In this case, the function has the same shape every half 
period, except for a sign change. This symmetry appears often in brushless perma-
nent magnet motor waveforms and therefore is important to recognize. In this case, 
the Fourier coefficients are zero for all even indices n. That is, the waveform contains 
odd harmonics only. In this case, (A.5) can be rewritten as 

fn  = 
- T /(0)e~'"edd n odd 
* J ü (A.9) 

0 n even 

Odd halfwave symmetry is independent of even and odd symmetry. Therefore a 
waveform can have both halfwave symmetry and even symmetry, in which case all 
coefficients are real and only odd harmonics exist. A similar statement can be made 
for waveforms that exhibit both odd and halfwave symmetries. 

A.4 Mathematical Operations 

Given a waveform f(6)  described by an exponential Fourier series (A.3), it is possible 
to relate mathematical operations on/(0) to operations on the Fourier series coeffi-
cients. In doing so, the resulting waveform has a Fourier series description as well. In 
the expression that follow, f(6),  g(6)  and h(6)  have the Fourier series expansions 



g(0)= X 
(A.10) 

MÖ)=X h*eik6 

Addition 
Given the sum of two functions, h(6)=f(0)+g(9),  the Fourier series coefficients of the 
sum are 

That is, the Fourier series coefficients of the sum of two functions is simply the sum 
of the corresponding coefficients. 

Scalar Multiplication 
Given the product g(d)=Kf($),  where K is a constant, the Fourier series coefficients of 
the product are 

So scalar multiplication simply scales all Fourier series coefficients by the scalar. 

Function Product 
Given the product of two functions, h(0)=f(6)g(6),  the Fourier series coefficients of the 
product are 

These expressions show that the Fourier series coefficients of a product are given by 
the discrete convolution of the coefficients constituting the product. 

Phase Shift 
If two functions are related by a phase shift as g(0)=/(0-0), then the Fourier series 
coefficients of g(6)  are given by 

K=fn+g,i (A/11) 

Sn=Kfn (A.12) 

(A.13) 



(A.14) 

This expression and (A.13) demonstrate the utility of the exponential form of the 
Fourier series. No such simple relationships for function product and phase shift 
appear for the trigonometric forms of the Fourier series. 

Differentiation 
The derivative of a function having a Fourier series description, produces another 
Fourier series. In the case of the exponential form, this relationship is simple. Given 
g(Q)=df(6)/d6,  the Fourier series coefficients of the derivative are 

gn=jnfn  (A.15) 

Thus, differentiation becomes multiplication by jn. 

Mean Square Value and RMS 
Power is associated with the RMS value of a function and mean square value is sim-
ply the square of the RMS value. That is, given a function/(#), its mean square value 
is defined as 

( f ^ h ^ U ^ 2 " 0 <A-16> 
Substitution of the Fourier series expression for/(0) into (A.16), gives the result 

( / ( * ) >  ¿ / „ / - „ = i l / „ | 2  (A.17) 

The RMS value of a function is the square root of (A.17). 

A.5 Computing Coefficients 

Often the most difficult aspect of the i\se of Fourier series is the computation of Fou-
rier series coefficients. When the function /(#) is simply defined, the Fourier series 
coefficients can often be computed using the defining integral (A.5). In many cases, 
the tedium involved in the use of (A.5) can be minimized by using the symbolic alge-
bra capabilities available in a number of software packages. 

When it becomes too difficult or impossible to use (A.5), the Fourier series coeffi-
cients can be computed numerically using the Fast Fourier Transform (FFT). The FFT 



algorithm forms the cornerstone of digital signal processing. As a result, most 
numerically-oriented software packages include functions for its computation. 

The following procedure describes use of the function fft(-), which computes the 
FFT of its argument, to find the exponential Fourier series coefficients for any peri-
odic function f(9).  The procedure requires that f(6)  be evaluated at specified points 
over one period. If f(6)  is a tabulated function, i.e., exists as a table of data points, an 
interpolation routine must be used to generate the required points. 

Procedure 
a) Choose the number of positive harmonics N such that the amplitude of all 

harmonics greater than N are negligible. Often FFT routines require that N 

be a power of two, that is, N= 2m, where m is an integer. If N is not chosen 
sufficiently large, aliasing occurs, which introduces error in the desired coef-
ficients. If N is chosen larger than necessary, undesired higher harmonic 
coefficients can be thrown away. The author has found that N= 64 is suffi-
cient for motor design purposes. 

b) Evaluate the function f(6)  at M=2N+1 equally spaced points between 0 and 
2K inclusive, where 2K is the assumed period. That is, evaluate f(9)  at the 
points 

Gk=-^-2n k = 0 ,1 ,2 , . . . ,M-1 
k M - l 

to produce the function valuesfk=f(0k),  for /c=0,l,...,M-l. 

c) Eliminate the last data point (^m-i/m-i) from this data set, leaving 2N data 
points. Compute the FFT of the resulting data set, Fk-(it(fk).  This produces 
2N frequency domain data points denoted Fk, for k=l,2,...,2N. 

d) Divide the frequency domain data points by 2N, i.e., Fk=Fk/(2N),  for k= 
1,2,...,2 N. 

e) The DC or »=0 Fourier series coefficient is F^ Using the notation from (A.5), 
which is not to be confused with the notation in b) and c) above,/q=F1. This 
value must be real but sometimes has a residual imaginary part. If it does, 
simply extract the real portion,/o=real(/o). 

f) The positive harmonics are the next N points, i.e.,fn=Fn+i,  for n=1,2,.. .,N. 

g) The negative harmonics are the complex conjugate of the corresponding 
positive harmonics according to (A.6). 



The above procedure is very fast and works well, especially when the number of 
points chosen is larger than necessary, and the excess harmonics are excluded at the 
end. Because the FFT is a numerical algorithm, it is common for symmetry properties 
to be violated. For example, if f(6)  is even, its Fourier series coefficients must be real. 
Use of the FFT may produce results with residual imaginary parts, which violates 
this symmetry property. When the symmetry properties of f(G)  are known, the FFT 
results can be modified to match the symmetry properties. 

A.6 Summary 

The exponential form of the Fourier series is conducive to mathematical manipula-
tion. The properties and mathematical operations presented here are useful for the 
analysis and design of brushless permanent magnet motors. 





Appendix B 
Magnetic Field Distributions 

in Polar Coordinates 

This appendix develops expressions for the flux density and field intensity in the air 
gap and permanent magnets of a radial flux, permanent magnet motor. The geome-
try considered is shown in Fig. B-l. 

B.1 Problem Formulation 

There are several problem formulation approaches that lead to a description of the 
magnetic field distribution. The absence of currents and the geometry shown in Fig. 
B-l promotes use of a simpler problem formulation based on a scalar magnetic 
potential. In this formulation, the solution is uniform in the axial direction, thereby 
making the problem two-dimensional. 

In air where there are no currents, magnetic fields can be described by the partial 
differential equation called Laplace's equation, which is 

V 2 F a = 0 (B.l) 

Figure B-1. Inner-rotor and outer-rotor geometries. 



where F„ is the scalar magnetic potential in the air space. In regions containing per-
manent magnets, magnetic fields can be described by the quasi-Poisson partial differ-
ential equation 

n 2 r V - M 
V Fm= (B.2) 

Mr 

where Fm is the scalar magnetic potential in the magnet, jjr is the magnet relative 
recoil permeability, and M is the magnet magnetization. The magnetization of the 
magnet is the magnetic field source in this problem. It is what causes flux to flow in a 
manner that obeys (B.l) and (B.2). 

If a solution to the above scalar potential equations can be found, the corresponding 
vector field intensity is computed using 

H = -VF  (B.3) 

where F is either Fa or Fm. Given the field intensity, the vector flux densities in the 
two regions are given by 

Bm=W0Hm+fioM  ( B ' 4 ) 

where n0 is the permeability of free space and the subscripts a and m denote the air 
and magnet regions respectively. 

Specific solutions to (B.l) and (B.2) are found by applying the customary boundary 
conditions which specify that the tangential component of field intensity and the nor-
mal component of the flux density are continuous across material boundaries. 
Because the ferromagnetic material is assumed to be infinitely permeable, these con-
ditions imply that the tangential component of the field intensity is zero at ferromag-
netic material boundaries. 

Because the air and magnet regions are linear, superposition applies. As a result, if 
the magnetization M is written as a Fourier series, each term in its Fourier series 
creates like harmonic terms in the field intensity and flux density. Because of this 
property, the partial differential equations need only be solved using a general term 
in the magnetization Fourier series. This general solution then describes a general 
term in the field intensity and flux density Fourier series. The overall solution is sim-
ply the sum of the general solution applied to each harmonic in the magnetization 
Fourier series. 



B.2 Polar Coordinate Application 

The geometry shown in Fig. B-l is best described using polar coordinates. Therefore, 
a polar coordinate solution to the partial differential equations (B.l) and (B.2) is 
appropriate. The following solution applies equally well to both the inner rotor and 
outer rotor geometries shown in Fig. B-l. 

In general the magnetization has components along the radial and tangential direc-
tions. That is, the magnetization can be written as 

M = Mrir +Mdl0 (B.5) 

where the radial and tangential magnetization components are described respec-
tively by the Fourier series 

Vo „iL 
jnN„9 (B.6) 

where Np=Nm/2  is the number of pole pairs, Br is the magnet remanence, and the 
summations define dimensionless, unity amplitude magnetization shapes as a func-
tion of 6 in mechanical measure. This model permits essentially arbitrary periodic 
magnetization of the magnet ring, thereby making it possible to mimic discrete rotor 
magnets with ease. 

In polar coordinates, the numerator on the right hand side of (B.2) becomes 

^ - Mr 1 dM0 

V-M = — L + /r7\ 
r r 30 

which, for the nth harmonic of the Fourier series in (B.6) becomes, 

* « 

where p=nNp. Likewise in polar coordinates, the partial differential equations (B.l) 
and (B.2) become 



d2F„ 1 dF„ 1 32F„ 
3r r dr r d6 

for the air gap region, and 

9r2 r dr r2 Ô02 ^ ( B ' 1 0 ) 

for the magnet region. 

Since the ??th harmonic of the magnetization produces the nth harmonic of the solu-
tion, the nth harmonic solution of Laplace's equation (B.9) describing the potential in 
the air gap can be written as 

Fn(r/d) = D a e ^ ( r ^ + E a r - f } ) (B.ll) 

which leads to a corresponding field intensity of 

Hn =-VF f l = Har (r,e)lr+Ha0  (r,Q)  10 (B.12) 

where 

dr (B.13) 

and 

H(i0  M) = = -jßD. (Ear-^ (B.14) 

The corresponding flux densities are found by applying (B.4). 

The nth. harmonic solution to the quasi-Poisson partial differential equation (B.10) is 
the sum of two components —the solution of the underlying Laplace's equation given 
by F'm and a particular solution F"t that fits the magnetization model. The solution 
of the underlying Laplace's equation has the form 

F;i(r,e)  = (D,y  +Emr-eyd (B.15) 

and the particular solution is the solution of 



dX ldF,: 1 d2F,: _Br(Kril+jpK6n)  j p e 

a/-2 r dr r2 d62 / w * (B-16) 

which follows from the substitution of (B.8) into (B.10). The solution to this equation 
is 

K ( r , 0 ) = CmreW (B.17) 

Substitution of this solution into (B.16) leads to a solution for the constant Cm of 

Br(Krn+jpKen) 
C ,„ = 

1 ~P2)Wo  i 8 - « ) 

When p=nNp=±l, (B.18) is infinite and (B.17) is an invalid particular solution. This 
degenerate case occurs only for motors that have one pole pair, i.e. Np=l, and only for 
the fundamental component. The solution in this case is found by applying the coor-
dinate transformation r=e and using a particular solution of the form 

F;a(t,6)  = Cnilt t'V" (B.19) 

Substitution of this expression into (B.16) gives 

M ^ i + 7 ' M 
Qui ~ ' (B.20) 

where the solution for is the complex conjugate of (B.20). Rewriting (B.19) in 
terms of r gives 

F;il(r,d)  = Cmlr\n(rye  (B.21) 

Finally, combining (B.15), (B.17) and ,(£.19) gives the scalar potential in the magnet 
region as 

M) = (Cmr  + Dn/  + Emr-vye (B.22) 

for and 



M ) = (Cwirln(r) + Dlulr* + 

for with the /3=-l scalar potential being the complex conjugate of (B.23). 

Given the scalar potential, the field intensity in the magnet region is 

(B.23) 

Hm=-VFm=Hmr(r,d)ir  + Hme(r/d)le (B.24) 

where 

(B.25) 

for and 

H m r l (r,0) = - [ c w l (l + ln(r)) + D m l -E m l r"" 2 ]e ' 

H m 0 1 (r,0) = - ; [ c m l ln(r) + D m l + E ^ r " 2 ] * ' 6 (B.26) 

for /3=1, with the j8=-l solution being the complex conjugate of (B.26). The corre-
sponding flux densities are found by applying the second equation in (B.4). 

The boundary conditions to be met for the inner rotor and outer rotor motors are 

Hm0(Rr,e)  = 0 

Hm0{Rm,d)-Hntì(Rm,d)  = 0 

B„ir(Rm/G)-Bar(Rm,e)  = 0 

Ha9(R5,d)  = 0 
(B.27) 

B.3 Air Gap Region Solution 

Application of the above boundary conditions leads to analytic solutions for the 
radial and tangential components of the flux density and field intensity in the air gap 
and magnet regions. These solutions can be written in many equivalent forms. The 
nth harmonic Fourier series coefficients for the radial and tangential components of 
the flux density in the air gap region for are 
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where 

K K 
^ _ IKmclKrn 1 - A 
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in which 

Rr ^ 
(20) (20) 
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(B.30) 

and 

Kmc 
Krn +jpKe„ 

I - / ? 2 (B.31) 

For ¡5= 1 , the fundamental harmonic components are 
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(B.34) 

and 

Nirt ~ (B.35) 

As before, the solution is the complex conjugate of the p=i solution. 

Given (B.28), the associated field intensities are 

Harn = B am I Mo 
HaOn - B(t0n /Mo (B.36) 

B.4 Magnet Region Solution 

The solution in the magnet region is more complicated than that in the air region 
because the magnet region contains the source of the magnetic field. The nth har-
monic Fourier series coefficients for the radial and tangential components of the flux 
density in the magnet region for are 

K md 

/ \(0~D r 
J n i / 

+K mb 
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(0+1) (0-1) 
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(B.37) 
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where Kmc is given in (B.31) and 
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For ß=l, the fundamental harmonic components are 
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As before, the /3=-l solution is the complex conjugate of the above ¡5=1 solution. 

For the above magnet region flux densities, use of (B.4), (B.5), and (B.6) leads to the 
associated field intensities 
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B.5 Summary 

The flux density distribution in the air gap region mm(Rm,Rs)<r<max(Rm,Rs)  of a sur-
face magnet motor as described by Fig. B-l is given by 

B« (rA) = B«r (rA)l  + Boo ('A-Vo  (B.45) 

where the corresponding radial and tangential components of the flux density are 

Bar(r,6)=  £ Bame'"0 

BM= i w * * ( B ' 4 6 ) 
11=-oo 

where B a r n and B ^ are the Fourier coefficients given by (B.28) through (B.35), and 6 
is angular position in electrical measure (0e=Np6m), rather than mechanical measure 
as given in (B.6). The Fourier series coefficients of the corresponding radial and tan-
gential components of the field intensity are given by (B.36). 

The flux density distribution in the magnet region min(Kr,Rm)<?'^max(R,-,R,H ) of a 
surface magnet motor as described by Fig. B-l is given by 

K (rA)  = Kr (rA)l+Ko  (rA)h  (B.47) 

where the corresponding radial and tangential components of the flux density are 



n=-<*> 

Bm0 KT'O)-  ¿ j Bwdne 

n=-  oo 

where Bnmt and Bu,en are the Fourier coefficients given by (B.37) through (B.43), and 6 
is angular position in electrical measure. The Fourier series coefficients of the corre-
sponding radial and tangential components of the field intensity are given by (B.44). 

B.6 Magnetization Profiles 

The magnetic field expressions in the preceding section rely on a Fourier series 
description of the normalized magnet magnetization as stated in (B.6). When individ-
ual magnets are used rather than a magnetic ring as shown in Fig. B-l, the magnet 
magnetization is set to zero in the spaces between the magnets. That is, the preceding 
magnet ring model is used, but those portions of the magnet ring that model air 
spaces between individual magnets are simply modeled as unmagnetized magnet 
material. 

Mathematically, magnet magnetization can be any arbitrary shape defined by a 
Fourier series. In practice, magnets are typically magnetized to approximate either 
radial magnetization or parallel magnetization as shown in Fig. B-2. In addition, 
radial sinusoidal amplitude magnetization and constant amplitude sinusoidal angle 
magnetization as shown in Fig. B-3 are considered. The actual magnetization 
achieved is a strong function of the magnetization fixture and equipment used to 
magnetize the magnets. To a lesser extent, some magnet materials have a preferred 
magnetization direction that favor one magnetization over others. 

Radial Parallel 

* <ï 
Figure B-2. Radial and parallel magnetization. 

Sine Direction 



Radial Magnetization 
Radial magnetization is simple. It has a constant radial component over the angular 
width of the magnetized magnet area, zero magnetization in the air spaces between 
magnets, and it has a zero tangential component everywhere. Given the magnet 
geometry shown in Fig. B-4, the radial component of this magnetization is shown in 
Fig. B-5. The resulting Fourier series coefficients Krn and as defined in (B.6) are 

nodd 

0 otherwise (B.49) 

where a,,, is the magnet fraction and sinc(x)=sin(x)/x. 

;r radE 

Figure B-4. Magnet geometry. 

-nil 
d, 
c 

Figure B-5. Radial magnetization. 



Parallel Magnetization 
When a magnet is magnetized parallel to its central axis, a tangential magnetization 
component is required to turn the magnetization as one moves away from the central 
axis. One the basis of the geometry in Fig. B-4 and the parallel magnetization shown 
in Fig. B-2, the radial and tangential magnetization components are shown in Fig. B-
6. Around the origin 0=0, the radial component has a cosinusoidal shape to the mag-
net edges, while the tangential component has a negative sinusoidal shape. The 
resulting Fourier series coefficients Krn and Kq,j as defined in (B.6) are 

/ \ 

Mv sin a' 
p 

\ 

K-dn ~ 
-jMf 

/ \ 

cr\ c a 
LUJ 

i ^ J 

cos(a'n)-nNp  cos 

0 

sin.(a'n)-nNp  sin 

0 

, > a sin (a'n) sin (a'n) 
p J 

a 
AL 

cos(a'n) 

?zodd 

otherwise 

n odd 

otherwise 

(B.50) 
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where Np is the number of pole pairs, a'=amJt/2  and 

2N„ 

l-(NNpJ (B.51) 

When nNp= 1, (B.51) becomes infinite, making (B.50) invalid. For this case, when a 
motor has just one pole pair, the fundamental harmonics are 

a ' +cos (a') sin (a') 
KRL = 

. a '-cos(a')sin (a') (B.52) 
Ko l =] 

Radial Sinusoidal Amplitude Magnetization 
In radial sinusoidal amplitude magnetization, the magnet is assumed to be one con-
tinuous ring having a radial magnetization in the shape of a sine wave. The tangen-
tial magnetization is zero. The resulting Fourier series coefficients KRN and K^ are 

— 

/ 2 ii=±  1 

0 otherwise 

Ke«= 0 
(B.53) 

Sinusoidal Angle Magnetization 
Sinusoidal angle magnetization also assumes that the magnet is one continuous ring. 
In this case, the amplitude is constant, but the angle varies sinusoidally. The resulting 
Fourier series coefficients KRN and Kq,, for this magnetization are 

K,.„ — YL N = ±L 
0 otherwise 

0 otherwise 

Since all of the above magnetization profiles exhibit halfwave symmetry and con-
tain only odd harmonics, the resulting magnetic field distribution in the air gap and 
magnet regions also exhibits halfwave symmetry and contains only odd harmonics. 



The preceding expressions for the magnetic field distribution in the air gap and mag-
net regions can be evaluated to produce values for the radial and tangential compo-
nents of the field at any point. Since these field expressions are a function of the mag-
netization and geometric parameters, a multitude of plots can be produced to study 
the influence of parameters on the field distribution. 

As a first example, consider the influence of magnetization on the radial flux den-
sity at the stator radius Rs as shown in Fig. B-7. The same magnet material and geo-
metric dimensions apply to each curve in the figure. The solid curve describes a radi-
ally magnetized magnet having a magnet fraction of a„,=0.85. The dashed curve 
describes a parallel magnetized magnet having the same magnet fraction. The dotted 
curve describes a radial sinusoidal amplitude magnetization, and the dash-dotted 
curve describes a sinusoidal angle magnetization. This plot clearly shows the impact 
of magnetization on flux entering the stator. 

Figure B-8 shows the influence of magnet fraction on the radial flux density at the 
stator surface Rs. In the figure, magnet fractions of 0.6, 0.7, 0.8, and 0.9 are considered 
with these widths corresponding to the increasing widths of the pulse shapes shown. 

- 1 
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Angular Position, °E 

Figure 5-7. Flux density at stator surface versus magnetization type. 
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Figure B-8. Flux density at stator surface versus magnet width. 

By computing the magnetic field on a grid of points throughout the air gap and 
magnet regions, it is possible to compute stream lines that illustrate flux flow. As the 
example in Fig. B-9 shows, the flux does not flow uniformly through the magnet 
material or the air gap, as is assumed by the simplified magnet and air gap modeling 
in Chapter 4. The flux stream lines that do not terminate at the stator surface at Rs 

represent flux that leaks from magnet to magnet. In chapter 4 this leakage flux 
flowed through the magnet leakage reluctance R/ and was accommodated for in the 
analysis performed there by the leakage factor Kj. 

The simplified modeling performed in Chapter 4 assumed that the MMF across the 
air gap was uniform over the magnet surface. In reality, this is not true because the 
magnet surface is not a equipotential surface. This fact is illustrated in Figs. B-10 and 
B-ll. Figure B-10 shows representative flux lines leaving the magnet surface at Rm 

and terminating on the stator surface. The MMF associated with each of these flux 
lines is given by computing 

along the trajectory of the flux lines. Doing so for the example shown in Fig. B-10, 
and plotting the resulting MMFs versus position gives Fig. B-ll . Across the center 

(B.55) 
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Figure B-9. Flux lines through magnet and air gap regions. 
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Figure B-10. Flux lines across the air gap region. 
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Figure B-11. Air Gap MMF distribution for magnet shown in Fig. B-10. 

portion of the magnet, the air gap MMF is fairly constant because of the assumed 
radial magnetization, but the MMF decreases quickly as one moves toward the mag-
net edges that coincide with the left and right ends of the plotted line. As a simple 
approximation of the air gap MMF, it is convenient to simply compute the MMF at 
the magnet center, 0=0. 

B.8 Summary 

This appendix presents an analytic model for the magnetic field distribution in radial 
flux motors having surface-mounted magnets. This model results from the rigorous 
solution of the partial differential equations governing the field. This description is 
extremely valuable for accurately predicting brushless permanent magnet motor per-
formance. Without it, one must resort to simplifications such as that considered in 
Chapter 4. 



Appendix C 
Magnetic Field Distributions 
in Rectangular Coordinates 

This appendix develops expressions for the flux density and field intensity in the air 
gap and permanent magnets of axial flux and linear permanent magnet motors. The 
rectangular coordinate geometries considered are shown in Fig. C-l. To apply the 
results presented here to an axial flux permanent magnet motor, the ^-dimension is 
unwrapped to become the x-dimension and the y-dimension becomes the axial 
dimension. 

- 3-=/=r /,,/-7 

, V = 1/2 

— v = -/v 

(c) 

Figure C-1. Rectangular Coordinate Geometries. 



The problem formulation here follows that of the general problem formulation 
described for the the polar coordinate case in Appendix B. As a result, it will not be 
repeated here. 

C.1 Rectangular Coordinate Application 

The linear geometries considered here are shown in Fig. C-l. These geometries form 
the three basic magnetic structures that appear in applications. Each geometry is 
assumed to extend infinitely in the x-direction. The magnetization is assumed to have 
a normal component only. That is, the magnetization can be written as 

M = 0lx+Myiy (C.l) 

where the y-direction component is described by the Fourier series 

(C.2) 
r*0 K=—oo 

In this equation, Br is the magnet remanence, rp is the magnet pole pitch, i.e., Tp  is the 
distance between the centers of two North magnet poles, and the summation defines 
an arbitrary, dimensionless, unity amplitude magnetization profile. 

Given (C.l) and (C.2), the right hand side of (B.2) is equal to zero and the equations 
describing the magnetic field in the air gap and magnet regions are respectively 
given by 

V 2 F + = 0 (r 
fl  dx2 dy2 ( C 3 ) 

y2p _ d2Fm d2Fm 
V f ' » - a*2 + 3 / ( C 4 > 

Because of linearity, the nth harmonic of the magnetization (C.2) stimulates the nth 
harmonic component in the solution. As a result, the solution of (C.3) and (C.4) can 
be found for the generic nth harmonic, and the rest of the solution harmonics follow 
by superposition. 

Of the many possible forms for the scalar magnetic potential solutions 



F(X/y)  = e'lix ( D / v + Ee~fiv)  (C.5) 

and 

F{xfy)  = De'f,x(e^  + Ee~^) (C.6) 

are the most convenient forms where D and £ are coefficients determined by the 
boundary conditions, and 

b-^L 
~ (C-7) 

to match the period of the nth harmonic in (C.2). 

Single Magnet and Single Air Gap Case 
The scalar magnetic potential and corresponding magnetic field solution for the sin-
gle magnet and single air gap case as shown in Fig. C-lfl, are given by 

= + (C.8) 

Ha = ~VFfl = Hax {x,y)lx+  Hay (x,y)  iy (C.9) 

in the air gap region, and 

=-VF„, = Hmx (x,y)I  + Hmy (x,y)ly  (C.ll) 

in the magnet region. The corresponding flux density expressions are found by 
applying (B.4). The coefficients in thes£ expressions are found by applying boundary 
conditions at the material interfaces, namely, 

Hmx (x,0)  = 0 Hmx (x,lm  ) - Hax (x,lm  ) = 0 
Hax (x,ls  ) = 0 Bmy (x,lm  ) - Bay (x,tm  ) = 0 ( C " 1 2 ) 



Performing this step leads to the air gap flux density distribution whose /ith har-
monic exponential Fourier series coefficients are 

sinh(/3/,„)sinh[/?(/s -i/)] 
"ax ~ -J°rKyn  7 

A 1 
sinh(j3/w)cosh[/J(/s-y)] (C.13) 

Bay - BrKyn 
Ai 

for lln<y<ls. The nth harmonic coefficients of the magnet region flux density distribu-
tions are 

sinh(lg)sinh(/3y) 
nix ~ i 

1 _ D v 
'my r i/n 1 - M r 

A] 

sinh(ßg)cosh(ßy) (C.14) 

for 0<i/< /,„, where 

A, =smh(ßlvl)cosh(ßg)  + vRsinh(ßg)cosh(ßlm)  (C.15) 

in which g=ls-lm is the air gap length. 

Two Magnet, Single Air Gap Case 
The geometry shown in Fig. C-lb has magnet regions on both sides of an air gap. 
Writing the scalar potential in the upper magnet, air gap, and lower magnet regions 

+ ( c i 6 ) 

respectively, and applying the pertinent boundary conditions leads to flux density 
distributions in the respective regions, whose nth harmonic exponential Fourier 
series coefficients are 



. sinh(^/2)sinh[y3(/s-y)] 
- )ßRörKv„ 

2 

sinh(/Jg/2)cosh[/J(Zs-y)l 
~ Mr ÌUy B r Kyn 

(C.l 7) 

in the upper magnet region, g/2<y<ls, 

Bax =ÌBrK 

3 _ D 1/ 
«1/  Dr yn 

sivh(ßlm  ) sinh (ßy) 
A2 

sinh(ßlm ) cosh (ßy) (C.l 8) 

in the center air gap region, -g/2<y<g/2,  and 

sinh(/^/2)sinh[/?(/s+y)] 
B , x = ')Mrb^ un 

ìly - BrKl/n 1-Mr 
sinh(jgg/2)cosh[/î (f s+y)] 

A, 
(C.19) 

in the lower magnet region, -ls<y<-g/2,  where 

A2 = sinh (film  ) cosh (0g/2)  + nR sinh (fig/2)  cosh (fil,H  ) (C.20) 

One Magnet, Two Air Gap Case 
The remaining linear geometry shown in Fig. C-lc has a center magnet region 
enclosed by upper and lower air gaps. Writing the scalar potential in each of these 
three regions and applying the pertinent boundary conditions lead to flux density 
distributions whose ?zth harmonic exponential Fourier series coefficients are 

BuX=-ßrK 
sinh(/5/,„/2)sinh[/3(/s-y)] 

yn Ac 

? _ D y ity DrIKyn 
sinh (/?/„,/2)  cosh [ß(/s  - y ) ] (C.21) 

A, 
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in the upper air gap region, lm/2<y< 

n n y Sinh(/?g)sinh(/3y) 
bmx = -)^RbrKyn 7 

A 3 
sinh (fig)  cosh (py) J _ D j/ 

'my Dr ̂ yn 
1 " Vii 

in the center magnet region, - lm/2<y<lm/2,  and 

sinh(/3/,„/2)sinh [jB(/s+y)] 
Bix - jBrK V"  A 

(C.22) 

smh(ßlm/2)cosh[ß(ls  + y)] (C.23) 
Bly - BrKyn 

in the lower air gap region, -ls<y<-lm/2,  where 

A3 = sinh(/?/,„/2)cosh + sinh (/3g)cosh(/}/m/2) (C.24) 

C.2 Magnetization Profile 

Given the magnetic field distributions for the three geomtries shown in Fig. C-l, and 
the assumed normal magnetization (C.l), a uniform magnetization profile equivalent 
to the radial magnetization shown in Fig. B-5 applies. In this case, the width of the 
magnetized regions match the magnet width. The Fourier series (B.49) applies in this 
situation where the magnet fraction is given by 

_ 2wm 
a " ' ~ (C.25) xv 

where wm is the magnet width. 

C.3 Summary 

This appendix extends the work presented in Appendix B to include three rectangu-
lar coordinate cases. 



Appendix D 
Symbols, 

Units, 
and Abbreviations 

A area, (m2) 

A amperes 

AC alternating current 

Arms amperes RMS 

Ar air gap cross-sectional area, (m ) 

Am magnet cross-sectional area, (m ) 

As slot cross-sectional area, (m ) 

Awb bare wire cross-sectional area, (m ) 

Awc covered wire cross-sectional area, 

(m2) 

B magnetic flux density, (T) 

Ba armature reaction flux density, (T) 
Bar radial air gap flux density distri-

bution, (T) 

Bae tangential air gap flux density 
distribution, (T) 

Bg air gap flux density, (T) 
* " 

BgS air gap flux density distribution 

at stator surface, (T) 

Bm magnet flux density, (T) 
Bmr magnet radial flux density distri-

bution, (T) 

Bwd magnet tangential flux density 

distribution, (T) 

Bpk peak flux density, (T) 
Br remanence or residual induction, 

(T) 

Bry rotor yoke flux density, (T) 

Bsy s ta tor yoke fl ux densi ty, (T) 

Bt stator tooth flux density, (T) 

(BH)m a x permanent magnet energy 

product, (J/m3) 

Q flux concentration factor 

D diameter, (m) 

DC direct current 

d radial depth, (m) 

dA differential cross-sectional area, 

(m2) 

dl differential length, (m) 

dr differential radial length, (m) 

ds windable slot depth, (m) 

dsh shoe tip depth, (m) 

dsht total shoe depth, dsh + dlr (m) 

dt shoe taper depth, (m) 

dwi, bare wire diameter, (mm) 



djvc covered wire diameter, (mm) 

de differential angular length, (rad) 

E,c electromotive force, EMF 

EMF volts 

Eb back EMF amplitude, (V) 

Eph phase back EMF, (V) 

tb back EMF, (V) 

eph phase back EMF, (V) 

F force, (N) 
magnetomotive force, MMF, (A) 

air gap MMF, (A) 

F,n magnet MMF, (A) 

fc fundamental electrical frequency, 
(Hz) 

fm mechanical frequency, (Hz) 

ft foot 

G wire gage 

8 air gap length, (m) 

H magnetic field intensity, (A/m) 

H Henries 

Hc coercivity or coercive force, (A/m) 

Hz Hertz 

h thickness, (m) 

1, i current, (A) 

h direct axis current, (A) 

h current amplitude, (A) 

quadrature axis current, (A) 

Lins RMS current, (A) 

in inch 

/ 3 
current density, (A/m") 

J Joules 

i square root of -1 

Kc Carter's coefficient 

Kc back EMF constant, V/rad/s 

K, magnet leakage factor 

Kn motor constant, (N-m/VW) 

K0 phase offset, (slots) 

Kp back EMF shape amplitude, 
(V/rad/s) 

Kr reluctance factor 

Ks, slot correction factor 

Kst lamination stacking factor 

Kt torque constant, N-m/A 

Ktrv torque per unit rotor volume, 

(N-m/m3) 

Kwb bare wire slot fill factor 

Koc covered wire slot fill factor 

Koc-max maximum covered wire slot 
factor 

K-wn winding factor 

k general constant, or 
back EMF shape, (V/rad/s) 

K eddy current loss constant 

h hysteresis loss constant 

L length, (m) 
inductance, (H) 

K end turn inductance, (H) 

air gap inductance, (H) 



Lph phase inductance, (H) P permeance, 1/R, (H/m), or 

Ls slot leakage inductance, (H) power, (W) 

Ls, axial stack length, (m) Pc permeance coefficient 

I length, (m) 
P 
1 core 

core loss, (W) 

Ibf pound force P f fringe permeance, (H/m) 

l,n magnet length along direction of P
S 

air gap permeance, (H/m) 

magnetization, (m) Pc eddy current loss, (W) 

MMF magnetomotive force or amperes Ph hysteresis loss, (W) 
m constant Pm manget permeance, (H) 
m meter PM permanent magnet 
mm millimeter 2 mm millimeter 

Pslot total I R loss of windings in a slot, 
N number of turns (W) 
N Newton 

V power, (W) or 
K-ph number of coils per phase, NJN^ integer constant 

NdFeB neodymium-iron-boron magnet psi lbf/in2 

material 
<? charge, or 

Nm number of magnet poles facing integer constant 
air gap around air gap R reluctance, 1/P, (m/H) 

Np number of magnet pole pairs fac- resistance, (Q) 
ing air gap, NJ2 

RS 
air gap reluctance, (m/H) 

Mph number of phases R¡ leakage reluctance, (m/H) 

K number of slots 
Rm magnet-air gap radius, (m) 

Km number of slots per magnet pole, RMS root mean square value 
NJNm 

Rph phase resistance, (O) 
N w number of slots per pole per 

* * 

phase, NJNJNph 

Rr radius to under side of magnet, 
(m) 

n integer constant 
Ryo rotor outside radius, (m) 

fundamental cogging torque 
Rs radius to stator-air gap interface, 

index 
radius to stator-air gap interface, 

index 
(m) 

ozf ounce force 
Rsi stator inside radius, (m) 



Rslot total resistance of windings in a 
slot, (Q) 

Rso stator outside radius, (m) 

r radius, (m) 

rad radians 

radE radians electrical 

radM radians mechanical 

rpm revolutions per minute 

S speed, (rpm), or 
coil span, (slots), or 
MMF source sign and scale factor 

S* nominal coil span, (slots) 
S„ skew factor Fourier series coeffi-

cients 

s seconds 

T  torque, (N-m) 

temperature, (°C) 

T Tesla, (Wb/m) 
Tcog cogging torque, (N-m) 

T0  nominal temperature, (°C) 
3 

V volume, (m ) 
V voltage 

Vu,b volume of bare wire in a slot, (m3) 

v voltage, (V) 
velocity, (m/s) 

W energy, (J) 

W watts 

Wb Weber 

Wc coenergy, (J) 

w width, (m) 

Wry rotor yoke width, (m) 

Ws slot width, (m) 

Wsb bottom slot width, (m) 

Wso slot opening width, (m) 

W$y stator yoke width, (m) 

Wt tooth width, (m) 

Wtb tooth body width, (m) 

a thermal resistivity coefficient, or 
angular offset between rotor and 
stator 

CCc coil pitch factor 

as slot fraction 

ask skew factor, (slots) 

a * s k minimum skew factor, (slots) 

A constant 

Ö constant or skin depth, (m) 

cogging torque Fourier series 
component 

e angle, (rad or °) 

Oc angular coil pitch, or 
coil angle 

Oc angle in electrical measure 

Oui angle in mechanical measure, or 
angular magnet width 

e„ angular pole pitch, In/bl,„ radM 

Oph angular phase offset 

0s angular slot pitch, 2 x / N s  radM 

Osi angle in slot measure, or 
slot angle 

Oso angular slot opening at air gap 



0t angular tooth width at air gap 

A, flux linkage, (Wb) 

M permeability, (H/m) 

Mo permeability of free space, 

(471-10"7 H/m) 

MR relative recoil permeability 

Mr relative permeability 

P resistivity, (Q-m) 

G 2 
air gap shear stress, (N/m or psi) 

tcp mean coil pitch, (m) 

torque Fourier series coefficient 

Tp magnet pole pitch, (m) 

% slot pitch, (m) 

<t> flux, (Wb) 

air gap flux, (Wb) 

<t>l leakage flux, (Wb) 

<Pr magnet remanent flux, (Wb) 

<Ps stator yoke flux, (Wb) 

<Pt tooth flux, (Wb) 

C0e fundamental electrical frequency, 
(rad/s) 

Olm mechanical frequency, (rad/s) 

°E degrees electrical 

°M degrees mechanical 





Appendix E 
Glossary 

This appendix defines terms used in describing brushless permanent magnet motors. 
Each term appears in italics where it is first used. 

air gap: the air space between the rotor and stator of a motor. 

air gap inductance: winding inductance due to flux crossing an air gap. 

alignment torque: torque produced by the interaction of the magnetic fields produced 
by permanent magnets and winding currents, also called mutual torque. 

Ampere's law: a fundamental law describing a magnetic field created by a current. 

armature reaction: magnetic field produced by motor windings as opposed to the mag-
netic field produced by permanent magnets. 

B-H curve: a plot of the flux density versus field intensity for a nonlinear material. 

back EMF: voltage produced in a winding due to permanent magnet motion. 

back EMF constant: the rate at which back EMF increases with speed. 

balanced winding: motor windings that produce back EMFs having the same ampli-
tude and shape, and the relative phase offset between each back EMF is 120°E for 
three phase motors. 

BLi law: force produced by the interaction of a magnetic field and current in a wire 
over a length L. 

BLv law: back EMF produced by the-mteraction of a magnetic field moving past a 
wire at a velocity v. 

breadloaf:  magnet cross-sectional shape that resembles the shape of bread baked in a 
loaf pan where the bottom and sides of the magnet are flat and the top facing the 
air gap is curved. 



Carter's coefficient:  a factor that specifies how much an air gap must be increased ana-
lytically to take into account the presence of slots. 

chorded: a short-pitched coil or winding. 

coercivity or coercive force,  Hc: field intensity across a permanent magnet when the 
space between the North and South poles has zero permeance. 

cogging torque: torque produced by permanent magnets seeking maximum alignment 
with stator teeth. 

coil pitch: angular span or spread of a coil. 

coil pitch factor:  ratio of coil pitch to pole pitch. 

commutation: the process of successively energizing and denergizing motor phase 
windings in a way that produces useful torque. 

commutation torque ripple: torque ripple created by imperfect motor commutation. 

concentrated or solenoidal windings: windings that are physically isolated from other 
phase windings. 

copper motor: motor construction that maximizes space for windings. 

core: a shaped structure of ferromagnetic material that conducts magnetic flux. 

core losses: combined hysteresis and eddy current losses in a material. 

demagnetization curve: relationship between flux density and field intensity for a per-
manent magnet after it has been magnetized. 

detent position: rotor position where there is zero torque. 

distributed windings: windings that are distributed and interlaced with other phase 
windings. 

double layer winding: a motor winding where two coil sides appear in every motor 
slot. 

eddy currents: currents induced in electrically conducting material by a changing 
magnetic field, produces energy loss in the material. 

eddy current losses: energy losses due to eddy currents. 

electromotive force:  EMF, voltage. 

end turns: coil turns that extend beyond the stator slots. 

end turn inductance: winding inductance due to coil end turns. 



Faraday's law: the relationship between the flux linked to a coil and the voltage 
appearing across its terminals. 

ferromagnetic  material: material such as steel that is highly permeable to magnetic 
fields. 

field  intensity: the force that moves the magnetic field fluid flux density, a spatial vec-
tor quantity. 

finite  element analysis: numerical solution of magnetic field problems that 

flux:  magnetic field fluid, a scalar quantity describing the net fluid passing through 
an area. 

flux  concentration factor:  amount by which air gap flux density is greater than that of a 
permanent magnet providing the air gap flux. 

flux  linkage: the total flux linked by a winding. 

flux  density: the density of the magnetic field fluid at a point in space, a spatial vector 
quantity. 

fractional  pitch magnet: a magnet pole that spans less than 180°E. 

fractional  pitch winding: a winding composed of coils that span less than 180°E. 

fractional  slot motor: a motor that does not support full pitch windings. 

full  pitch winding: a winding composed of coils that span 180 °E. 

fundamental  electrical frequency:  frequency of the back EMF produced in a winding 
due to rotor motion. 

hysteresis: a property of magnetic materials where the flux density in a material is a 
function of the history of the field intensity across the material, produces energy 
loss in a material. 

hysteresis loops: closed loops formed in the material characteristics of nonlinear mag-
netic materials under AC excitation conditions. 

t* r * 

hysteresis losses: energy losses due to hysteresis. 

inside-out motor: motor construction where the stator is inside the rotor. 

integral slot motor: a motor that supports full pitch windings. 
intrinsic demagnetization curve: demagnetization curve of a magnetized permanent 

magnet independent of its operating environment. 



ironless: a motor that is slotless, but may as well lack stator back iron. 

knee: a bend in the second quadrant demagnetization curve of a permanent magnet. 

leakage factor:  an empirical factor that relates magnet flux to air gap flux. 

Lenz's law: defines the polarity of the voltage induced in a coil. The induced voltage will 
cause a current to flow  in a closed circuit in a direction such that its magnetic effect  will 
oppose the change that produces it. 

Lorentz force  equation: force experienced by a moving charge in the presence of a mag-
netic field. 

magnet leakage flux:  magnet flux that does not cross the air gap into the stator. 

magnet leakage permeance: permeance associated with permanent magnet magnetic cir-
cuit model. 

magnet motor: motor construction that maximizes utilization of permanent magnet 
material. 

magnetic circuit analysis: solution of magnetic field problems using lumped parameter 
material approximations based on assumptions of magnetic field uniformity and 
direction. 

MMF: magnetomotive force, the sum or net total field intensity that moves flux 
through a material, a scalar quantity, permeability: a fundamental property of 
materials. 

motor constant: description of torque production efficiency. 

moving coil: a linear motor design where the windings move and the permanent mag-
nets are stationary. 

moving magnet: a linear motor design where the windings remain stationary and the 
permanent magnets move. 

mutual torque: torque produced by the interaction of the magnetic fields produced by 
permanent magnets and winding currents, also called alignment torque. 

normal demagnetization curve: demagnetization curve of a permanent magnet in a 
magnetic circuit after it has been magnetized. 

ohmic loss or I R loss: energy loss due to nonzero electrical resistance. 

pancake motor: an axial flux motor having radially-directed windings. 



permeability: a material property that describes how easily magnetic field flows 
through the material, analogous to how conductivity describes how easily current 
flows through a material. 

permeance: relationship between flux and MMF for a block of material, analogous to 
electrical conductance. 

permeance coefficient:  operating point of a permanent magnet in a magnetic circuit. 

phase: a motor winding that has a known angular relationship with respect to other 
phases. 

phase offset:  the number of slots that the coils of one phase winding are shifted relative 
to those of the next phase. 

phase windings: a collection of coils connected together to form a phase. 

pitch: measure of length or angle. 

pole: a magnetic pole, e.g., a North or South magnetic pole, formed by permanent 
magnets or energized coils. 

pole pair: the combination of one North and one South magnetic pole. 

pole pitch: the period or distance between magnet poles, i.e., the distance from the cen-
ter of one magnet pole to the center of the next magnet pole having an opposite 
magnetization direction, can be expressed as a distance or an angular quantity. 

proximity effect:  a phenomenon whereby current crowds towards the outer surface of 
a conductor due to an externally-applied magnetic field. 

principle angle: an equivalent angle between -180° and 180°. 

printed circuit board motor: an axial flux motor where the stator windings are formed 
and attached to a printed circuit board. 

rare earth: refers to the permanent magnets materials samarium-cobalt and neodym-
ium-iron-boron, which contain raretearth elements. 

r a 

recoil: the movement of the B-H curve of a material after it has been magnetized. 

relative permeability: the permeability of a material relative to that of air. 

relative permeance: a correction factor that modifies the flux density entering the stator 
in the area of the stator slots. 



relative recoil permeability: relative permeability of a permanent magnet along its 
demagnetization curve. 

reluctance: inverse of permeance, analogous to electrical resistance. 

reluctance factor:  a factor that compensates for the reluctance of ferromagnetic mate-
rial in a magnetic circuit. 

reluctance torque: torque produced by permanent magnets acting alone, or by winding 
currents acting alone. 

remanence or residual induction, Br: flux density of a permanent magnet when space 
between the North and South poles has infinite permeance. 

right hand rule: used in the application of the Lorentz force equation. If  the right hand 
is held so that the fingers  curl from  v to B, the extended thumb points in the direction ofF. 

right hand screw rule: used in the application of Ampere's law. Positive current is defined 
as flowing  in the direction of  the advance of  a right hand screw turned in the direction in 
which the closed path is traversed. 

rotor: the rotational structure in a motor. 

rotor yoke or back iron: a ring of ferromagnetic material behind the rotor magnets. 

saturation: a nonlinear property of ferromagnetic material whereby it becomes 
increasingly difficult to force additional magnetic flux through the material as the 
flux level increases. 

shoe: stator tooth projection that partially closes stator slots. 

six step drive: motor drive utilizing rectangular pulse currents, also called a brushless 
DC motor drive. 

skin depth: the distance over which the current amplitude drops to e~l or about 37% of 
its value at the conductor outer surface due to the skin effect and proximity effect. 

skin effect:  a phenomenon whereby current crowds towards the outer surface of a con-
ductor due to the magnetic field created by the current. 

slot: space between the stator teeth where windings are placed. 

slot fraction:  the ratio of the slot opening to the slot pitch. 

slot leakage inductance: winding inductance due to magnetic field crossing slots from 
one side to the other. 



slot liner, electrical insulationl added to the slot walls to protect stator windings. 

slot permeance coefficient:  relationship between the slot permeance and the effective 
slot permeance in the computation of slot leakage inductance. 

slot pitch: the period or distance between slots, i.e., the width of one tooth and one 
slot; can be expressed as a distance or an angular quantity. 

speed voltage: back EMF 

stacking factor:  ratio of ferromagnetic material area to total area. 

stator: the stationary structure in a motor. 

stator yoke or back iron: a ring of ferromagnetic material in the stator furthest from the 
air gap. 

teeth: ferromagnetic material in the stator that directs magnet flux past stator wind-
ings in the slots. 

torque: the twisting force experienced by an object due to a tangential force acting at a 
radius. 

torque constant: the rate at which torque increases with respect to current. 

torque ripple: torque variations that exist about a constant value. 

transformer  voltage: voltage induced across an inductor, Ldi/dt. 

triplen: harmonic indices that a multiple of three, i.e., triple-«. 

vector: a quantity defined by both an amplitude and a direction. 

winding: a collection of connected coils. 
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Symbols 367 

teeth 9,379 
thermal resistivity coefficient 91 
tooth body 162 
tooth body flux density 162 
tooth body width 162, 204 
tooth flux 158-160 
torque 4,379 

alignment 7, 60, 62, 373, 376 
cogging 7,60, 62, 111-113,210,213, 
374 
cogging torque 209 
commutation torque ripple 188, 374 
mutual 60,62,64,111,376 
mutual torque ripple 111 
reluctance 7, 60, 62, 378 
Reluctance and Mutual Torque 62 
torque ripple 184,187, 189-191,195 

torque constant 77,108, 185, 379 
Torque Constant, Back EMF Constant, 
and Motor Constant 108 
torque efficiency 109 
Torque From a Macroscopic Viewpoint 
58 
torque per unit rotor volume 110 
torque ripple 184, 187,189-191,195, 379 
transformer voltage 51, 379 
trapezoidal back EMF 184, 185, 201 
triple-»! 194,379 
triplen 194, 200, 201, 379 

w 

Valid Pole and Slot Combinations 127 
vector 379 
vector control 191 

winding 
balanced 
concentrated 
distributed 
double layer 
double layer lap 
end turns 
fractional pitch 
full pitch 
phase 
sinusoidal distribution 
solenoid al 

winding factor 129, 140,141, 176 
Winding Layout 129 
Winding Layout Procedure 137 
wire gage relationships 106 
wire insulation 91 
work 56 

379 
125, 127-129, 137, 373 

9, 176, 374 
9,374 

125 
130 
374 

82, 87, 375 
74, 375 

9, 79, 377 
180 

9, 374 

Y-Connection 198 


