Солнечный тепловой концентратор. Солнечная энергетика.
Альтернативная энергетика интересует все большее количество великих умов. Я - не исключение. :)
Все началось с простого вопроса: "А можно ли бесколлекторный двигатель превратить в генератор?" -Можно. А зачем? -Сделать ветрогенератор.
Ветряк для выработки электроэнергии - не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка - тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт. Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V3, где: P - мощность, Ватт S - площадь, м2 V - скорость ветра, м/с
Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег - мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.
Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: "Это же сколько льда! Сколько его надо греть, чтобы расплавить!?" И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?
Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?
Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.
Но задача стояла именно "колхозными" методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel ParabAnt-v2.rar который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны. Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.
В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.
Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.
Эксперимент №1
проводился около 7 часов утра в конце мая. Утро - далеко не идеальное время, но как раз утром в окно моей "лаборатории" светит Солнце.При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт. Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.
Эксперимент №2
Для второго эксперимента была сделана парабола диаметром 0.6 м. В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).
Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт., что соответствует примерно 102 Ватт/м.кв. Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.
Эксперимент №3
Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.Общая схема такова:
Нагрев происходит следующим образом: лучи от солнечного концентратора (1) через стекло проникают внутрь банки теплоприемника (2), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.
Теплоприемник (2) с помощью трубок (4,5) подключается к бачку (3) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.
В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт, что соответствует примерно 342 Ватт/м.кв.
Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!
При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.
Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно: - не идеальная поверхность концентраторов - не идеальные отражающие свойства поверхностей концентраторов - не идеальное ориентирование на солнце - не идеальное положение нагревателя - не идеальное время для эксперимента (утро)
не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.
Эксперимент №4
Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт, что соответствует примерно 419 Ватт/м.кв. И это в утренние часы! С 7 до 8 утра!Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.
Один из вопросов, который нужно решить на пути практического применения солнечных концентраторов - это снижение его парусности. Т.е. концентратор должен противостоять ветровым нагрузкам. Для снижения парусности можно использовать концентраторы, собранные из отдельных сегментов. Такие зеркальные концентраторы могут быть довольно плоскими, по сравнению с чашей параболы, а "дырчатая" структура снижает их парусность.
Читайте так же:
- Солнечный тепловой концентратор. Солнечная энергетика. Часть 1
- Солнечный тепловой концентратор. Солнечная энергетика. Часть 2
- Двигатель Стирлинга на солнечной энергии
- Гибкая солнечная батарея
- Solar tracker — Система ориентирования на Солнце
Применение солнечных тепловых концентраторов: http://ua.livejournal.com/580303.html https://youtu.be/1hPmE3Swtvw https://youtu.be/Rbjey5RGx3c https://youtu.be/M5OO3vCHRoI https://youtu.be/CgZ0N6cg-v4
P.S. Солнечная энергия - это ресурс, который еще долгое время будет оставаться бесплатным для всех жителей планеты. И сейчас каждый желающий может свободно получать ее для своих целей. Без примения дорогостоящих технологий, а используя только доступные любому человеку материалы. Что и подтвердили вышеописанные эксперименты.
Недавні записи
- Фільтрація Back-EMF. Безсенсорні BLDC мотори
- Text to speech. Українська мова
- LCD Display ST7567S (IIC)
- Розпізнавання мови (Speech recognition)
- Selenium
- Комп'ютерний зір (Computer Vision)
- Деякі думки про точність вимірювань в електроприводі
- Датчики Холла 120/60 градусів
- Модуль драйверів напівмосту IGBT транзисторів
- Драйвер IGBT транзисторів на A316J
Tags
barometer dht11 wifi bmp280 meteo ssd1306 uart books dc-dc lcd tim ssd1331 timer programmator battery exti mpx4115a motor flask nodemcu usb dma html java-script rs-232 st-link 3d-printer rfid esp8266 nvic encoder gpio piezo eb-500 brushless docker sms pmsm ngnix servo examples avr led smd i2c bkp eeprom usart solar soldering python flash stm32 raspberry-pi bme280 mpu-9250 hih-4000 foc bldc sensors rtc pwm capture adc max1674 atmega gps bluetooth remap mongodb mpu-6050 websocket css git watchdog displays ethernet web options
Архіви