Розпізнавання мови (Speech recognition)
Розпізнавання мови - перетворення аудіоданих у текст. Використовується для голосового керування, голосового вводу даних, як інтерфейс спілкування з ботами. У статті розглядаються декілька готових інструментів для розробників на Python.
Існують декілька підходів Розпізнавання мови. Можна використовувати сторонні сервіси, або застосувати ресурси власно комп'ютера на якому потрібно виконати аналіз аудіо даних.
Використання сторонніх сервісів для розпізнавання мови
Використовуючи сторонні сервіси, Ви маєте розуміти, що ви будите передавати дані через Інтернет. Якщо витік чутливих даних може негативно вплинути на питання безпеки - цього робити не слід.
У цьому прикладі я використовую бібліотеку SpeechRecognition. За допомогою неї будемо використовувати Google Cloud Speech API.
Встановлюємо SpeechRecognition:
pip install SpeechRecognition
Приклад:
import sys
import signal
import time
import speech_recognition as sr
def signal_handler(sig, frame):
print('You pressed Ctrl+C! Wait please...')
stop_listining()
sys.exit(0)
# initialize the recognizer
r = sr.Recognizer()
r.pause_threshold = 0.1
r.non_speaking_duration = 0.2
def callback(recognizer, audio):
try:
text = recognizer.recognize_google(audio, language='uk-in')
print(text)
except:
print("")
mic = sr.Microphone()
print("Silence please...")
with mic as source:
r.adjust_for_ambient_noise(source, duration=0.5)
stop_listining = r.listen_in_background(mic, callback, phrase_time_limit=10)
signal.signal(signal.SIGINT, signal_handler)
print("Listening...")
while True:
time.sleep(1.0)
Коли скрипт стартує, у мікрофоні має бути тиша. Це потрібно щоб нормально відпрацювала команда adjust_for_ambient_noise.
Детальніше по SpeechRecognition: SpeechRecognition
Розпізнавання мови на локальному комп'ютері
Розпізнавання мови виконується нейронними мережами. Якщо не використовувати сторонні сервіси, доведеться використовувати ресурси локального комп'ютера. Дивно, але не завжди це буде швидше.
Vosk
Встановлюємо необхідні бібліотеки до Python:
pip install pyaudio
pip install vosk
Завантажуємо натреновану модель для потрібної мови: https://alphacephei.com/vosk/models і розпаковуємо її у теку зі скриптом.
Я використовую модель vosk-model-small-uk-v3-small. вона ж вказана у скрипті.
import sys
import signal
import json
import pyaudio
from vosk import Model, KaldiRecognizer
def signal_handler(sig, frame):
print('You pressed Ctrl+C! Wait please...')
sys.exit(0)
model = Model('vosk-model-small-uk-v3-small')
rec = KaldiRecognizer(model, 16000)
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=8000)
stream.start_stream()
def listen():
while True:
data = stream.read(4000, exception_on_overflow=False)
if (rec.AcceptWaveform(data)) and (len(data) > 0):
answer = json.loads(rec.Result())
if answer['text']:
yield answer['text']
signal.signal(signal.SIGINT, signal_handler)
print("Listening...")
for text in listen():
print(text)
Torch
Цей приклад використовує Torch і розпізнає мову з wav-файлу:
import torch
#import zipfile
#import torchaudio
from glob import glob
device = torch.device('cpu') # gpu also works, but our models are fast enough for CPU
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_stt',
language='en', # also available 'de', 'es'
device=device)
(read_batch, split_into_batches,
read_audio, prepare_model_input) = utils # see function signature for details
# download a single file in any format compatible with TorchAudio
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav',
dst ='speech_orig.wav', progress=True)
test_files = glob('speech_orig.wav')
batches = split_into_batches(test_files, batch_size=10)
input = prepare_model_input(read_batch(batches[0]),
device=device)
output = model(input)
for example in output:
print(decoder(example.cpu()))
Розпізнавання мови у браузері
Деякі сучасні браузери можуть розпізнавати мову з мікрофона. Детальніше про це можна почитати тут: https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition
Звісно, вони попросять дозвіл для доступу до мікрофона, та що їм заважає це зробити без дозволу 😀
Приклад як це працює: https://mdn.github.io/dom-examples/web-speech-api/speech-color-changer/
Завантажити приклад: https://github.com/mdn/dom-examples/tree/main/web-speech-api/speech-color-changer
Недавні записи
- LCD Display ST7567S (IIC)
- Розпізнавання мови (Speech recognition)
- Selenium
- Комп'ютерний зір (Computer Vision)
- Деякі думки про точність вимірювань в електроприводі
- Датчики Холла 120/60 градусів
- Модуль драйверів напівмосту IGBT транзисторів
- Драйвер IGBT транзисторів на A316J
- AS5600. Варіант встановлення на BLDC мотор
- DC-DC для IGBT драйверів ізольований 2 W +15 -8 вольт
Tags
battery soldering java-script ngnix adc rs-232 flask esp8266 watchdog web exti solar mongodb rtc sms pwm usart books ethernet smd git websocket meteo css python dc-dc displays led ssd1306 eeprom gpio barometer max1674 mpx4115a brushless motor mpu-6050 timer sensors remap servo bldc atmega pmsm 3d-printer flash encoder examples dma raspberry-pi tim ssd1331 piezo mpu-9250 rfid eb-500 foc bme280 gps nvic dht11 bluetooth hih-4000 stm32 st-link docker uart avr html wifi bmp280 bkp nodemcu options usb lcd programmator i2c capture
Архіви