Схеми і прошивки - сторінка 5
‹ 1 2 3 4
GPS модуль EB-500 и ATMega

Статьи по теме: GPS EB-500 + ATMEGA. Схема. Пример для WinAVR (GCC) GPS. Расчет дистанции между двумя точками по GPS координатам. Расчет курса на точку
Понадобилось мне в очередном проекте задействовать GPS навигацию. Требования к GPS модулю были следующие:
- - UART интерфейс
- - нормальная чувствительность
- - быстрый старт
- - небольшая стоимость
- - можно было без проблем купить в Украине
INA125 усилитель для тензодатчиков с униполярным питанием

Не так давно стала задача считывать показания тензодатчика. Для этого понадобился операционный усилитель. Я решил найти специализированный и не морочиться с самопальной непроверенной схемой на операционных усилителях. Тем более, что прибор должен надежно работать в суровых условиях при широком диапазоне температур. При этом питание прибора униполярное +3В или +5В.
Оказалось не очень много инструментальных усилителей, которые могут работать с униполярным питанием. INA125 оказался самым подходящим. Вкратце о INA125: - униполярное питание 2.7V 36V - биполярное питание +-1.35V +-18V - внутренний настраиваемый источник опорного напряжения (1.24, 2.5, 5, 10 V) - Режим сна (460 микроампер в режиме SLEEP) - напряжение смещения: 250mV max - входной ток смещения: 20nA max - Высокий CMR: 100dB min - низкий уровень шума
ENC28J60 Подключаем Микроконтроллер к сети Ethernet

Смотри также WiFi модуль ESP8266
Отдельно работающее устройство на микроконтроллере становится более полезным, если с него можно получить интересующую нас информацию. Для этого мы подключали микроконтроллер к портам компьютера RS232 и USB.Однако, зависимость от компьютера - это не всегда хорошо. Иногда требуется создать автономное сетевое устройство со своим сетевым адресом и, желательно, с уже ставшим привычным, Web-интерфейсом. Этим мы и займемся.
DS1302 Побеждаем время. ds1302.c для WinAVR (GCC)
DS1302 - это микросхема реального времени. Она обеспечивает ход времени, даже когда основное устройство отключено от питания.
Основные характеристики:
- - простота подключения к микроконтроллеру по трехпроводному интерфейсу.
- - питание от 2 до 5.5 В.
- - из внешних элементов часовой кварц 32768 Гц и батарейка резервного питания 3В (я использую RC2032). Батарейки хватает надолго, микросхема потребляет около 300 нА (наноампер)!
- - считает секунды, минуты, часы, день месяца, месяц, год, день недели. Учитываются високосные года. Микросхема сможет работать до 2100года. Дальше не хватит счетчика лет. Это, несомненно, опечалило меня. :)
- - отображение времени в 12 или 24 часовом режимах с отображением AM или PM
Понижающий DC-DC преобразователь на 5V (3.3V) на базе MC34063

Мне потребовалось из более высокого напряжения получить 5В (а впоследствии 3.3В). При этом требовалось обеспечить экономичность, поскольку источником питания был аккумулятор и его заряд не бесконечный. Возможности организовать теплоотвод так же не будет, схема будет герметизирована. Линейные стабилизаторы напряжения, такие как LM7805 и им подобные, здесь не помогут. Нужен импульсный преобразователь (DC-DC Converter), т.е. понижающий Step-Down преобразователь напряжения. Преимущества импульсного преобразователя очевидны - высокая эффективность, не требует теплоотвода (по крайней мере, если и греются, то не так сильно как линейные преобразователи).
Cветодиодный куб ( LED Cube )
Еще одна простая светодиодная игрушка, но не менее эффектная, чем "вертушка" - светодиодный куб или LED Cube. Видео того, что получилось можно посмотреть прямо здесь .
На Youtube можете найти много аналогичных и более крутых вещей. Самая ценная деталь - это куб, собранный из светодиодов. Мы будем строить простой куб с размерами грани 4x4x4 светодиода. Т.е. нам понадобиться 4x4x4=64 светодиода яркого свечения любого цвета. Хотел сделать куб 8x8x8, но тогда понадобилось бы 512 светодиодов. С учетом стоимости светодиодов дороговато как для простой игрушки, начнем с простого 4x4x4.
Графический дисплей WG12864A
Наступает момент, когда для решения поставленной задачи недостаточно возможностей символьных LCD, рано или поздно приходиться переходить к графическим LCD дисплеям.
Разнообразие их очень велико, и если символьные индикаторы в большинстве имеют сходный интерфейс, то интерфейс графических LCD очень сильно отличаются друг от друга.
Это обусловлено использованием различных контроллеров для различных LCD от разных производителей. В этой статье расскажу о WG12864A с управляющими контроллерами ks0108 фирмы Samsung. Сам дисплей разбит на две зоны размером 64x64 за каждую зону отвечает свой чип. Выбор чипа осуществляется подачей логического уровня на выводы CS1 и CS2. При этом, есть возможность писать в оба чипа одновременно. СКАЧАТЬ ПРИМЕР использования WG12864A для WinAVR (GCC) можно здесь. Читайте так же: Отличия WG12864A и WG12864B. Скачать обновленный пример можно здесь.
Как оживить Atmega8, Как реанимировать Atmega168
Если по неосторожности или по не знанию запрограммировать микроконтроллеру Atmega8 во фьюзах бит RSTDISBL, то последовательным программатором его уже не прошить. Для этого нужен параллельный программатор. Но Атмегу можно оживить и без него. Для этого понадобиться второй такой же микроконтроллер.
Использование cимвольных жидкокристаллических LCD дисплеев. Пример на GCC (WinAVR) для Atmega 8
Основными достоинствами символьных жидкокристаллических индикаторов (дисплеев) являются простота использования, не большая потребляемая мощность, рабочие напряжения 3..5 В, долговечность (до 15 лет непрерывной работы). На данный момент очень популярны ЖКИ компания Winstar. Не то чтобы популярны, соотношение цена/качество у них наиболее приемлемое. Winstar производить широкую линейку ЖКИ в том числе и графические индикаторы, но сегодня мы говорим о символьных. (см. также Графический дисплей WG12864A)
MAX1674 - DC/DC преобразователь. Высасываем батарейку до конца.
Для питания носимых приборов чаще всего применяются обычные батарейки. Удобные, популярные, везде можно купить. Чтобы максимально эффективно использовать батарейки, попросту говоря, высосать их до дна, применяют специальные DC/DC преобразователи. Как правило, это специализированные микросхемы. Я попробовал несколько из них и остановился на MAX1674EUA+. В первую очередь из-за высокого КПД 94%, миниатюрные габариты, и минимум дополнительных элементов. Микросхема выдает на выходе 3.3 или 5В. Питается напряжением от 0.7 до 6В. Проверено на одной пальчиковой батарейке 1.5 вольта, работает исключительно.
От слов к делу. Документация, так сказать, первоисточник здесь.
Проверенная временем схема для получения 3.3В:
7-и сегментный ЖК-индикатор. Пример использования.
Cемисегментные ЖК дисплеи (индикаторы) очень древние существа. Но даже в мире символьных, графических и цветных дисплеев у них есть свое место. Они особо полезны для обеспечения отличной видимости при ярком освещении (на солнце). Имеют мизерное энергопотребление.
Дисплеи могут быть с электроникой и без. Именно о них (без электроники) и пойдет речь.
Как правило, у таких дисплеев один вывод общий, и по выводу на каждый сегмент. В управлении такими дисплеями нет ничего сложного. Но есть две особенности:
- Для управления таким дисплеем требуется много выводов микроконтроллера, по одному на каждый сегмент. Для 3 разрядного индикатора 24 вывода.
- Контрастность может падать, если постоянное напряжение приложено в течение долгого времени. В этом случае жидкокристаллическая структура деградирует из-за миграции ионов.
Простая отладочная плата
Мой брат занялся микроконтроллерами. У меня есть AVR-Easy, но, во-первых, я ее зажал :), во-вторых, она большая по габаритам. Ему я сделал небольшую отладочную плату под мега популярную ATMega8. Специально, чтобы в кармане на работу носить и в свободное время под столом чего-то мудрить. В общем, ничего особенного, пустяшная штуковина, чего про нее писать!? Но настолько удачная получилась, что я и решил себе сделал как мобильный боевой вариант. Делалась под имеющиеся программаторы (AVR910 USB Programmer) Вот решил поделиться. Печатная плата здесь. Схему даже не рисовал.
P.S.
Сергей Федоров прислал простую отладочную плату для Mega16 на борту RS-232, питание от программатора.
‹ 1 2 3 4
Категорії
Недавні записи
- FOC - своя реалізація векторного керування. Підбиваю підсумки 2022 року
- Конструктор регуляторів моторів. Підбиваю підсумки 2022 року.
- Чому трифазні мотори стали такими популярними?
- FOC & Polar coordinates
- Конструктор регуляторів PMSM, BLDC двигунів
- Своя бібліотека для векторного керування безколекторними моторами
- Not Allowed
- Адаптивний ПІД регулятор
- Конструктор регуляторів моторів. Структура.
- Конструктор регуляторів моторів. Анонс.
Tags
st-link 3d-printer encoder servo solar java-script git wifi uart mpu-9250 sensors capture motor esp8266 nodemcu usb usart piezo rfid css atmega bmp280 bkp avr displays brushless watchdog battery sms rs-232 tim mpu-6050 barometer examples nvic pmsm dc-dc eb-500 soldering meteo rtc gpio books websocket docker dht11 led smd stm32 web timer dma lcd mpx4115a hih-4000 bldc ssd1306 adc mongodb python options eeprom raspberry-pi remap max1674 programmator ethernet foc ngnix ssd1331 gps flash exti bluetooth html bme280 i2c pwm flask
Архіви